Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Biomedical Engineering ; (6): 621-629, 2021.
Artículo en Chino | WPRIM | ID: wpr-888220

RESUMEN

Surface electromyography (sEMG) is a weak signal which is non-stationary and non-periodic. The sEMG classification methods based on time domain and frequency domain features have low recognition rate and poor stability. Based on the modeling and analysis of sEMG energy kernel, this paper proposes a new method to recognize human gestures utilizing convolutional neural network (CNN) and phase portrait of sEMG energy kernel. Firstly, the matrix counting method is used to process the sEMG energy kernel phase portrait into a grayscale image. Secondly, the grayscale image is preprocessed by moving average method. Finally, CNN is used to recognize sEMG of gestures. Experiments on gesture sEMG signal data set show that the effectiveness of the recognition framework and the recognition method of CNN combined with the energy kernel phase portrait have obvious advantages in recognition accuracy and computational efficiency over the area extraction methods. The algorithm in this paper provides a new feasible method for sEMG signal modeling analysis and real-time identification.


Asunto(s)
Humanos , Algoritmos , Electromiografía , Gestos , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador
2.
Res. Biomed. Eng. (Online) ; 33(1): 78-89, Mar. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-842482

RESUMEN

Abstract Introduction Sign language is a collection of gestures, postures, movements, and facial expressions used by deaf people. The Brazilian sign language is Libras. The use of Libras has been increased among the deaf communities, but is still not disseminated outside this community. Sign language recognition is a field of research, which intends to help the deaf community communication with non-hearing-impaired people. In this context, this paper describes a new method for recognizing hand configurations of Libras - using depth maps obtained with a Kinect® sensor. Methods The proposed method comprises three phases: hand segmentation, feature extraction, and classification. The segmentation phase is independent from the background and depends only on pixel value. The feature extraction process is independent from rotation and translation. The features are extracted employing two techniques: (2D)2LDA and (2D)2PCA. The classification employs two classifiers: a novelty classifier and a KNN classifier. A robust database is constructed for classifier evaluation, with 12,200 images of Libras and 200 gestures of each hand configuration. Results The best accuracy obtained was 96.31%. Conclusion The best gesture recognition accuracy obtained is much higher than the studies previously published. It must be emphasized that this recognition rate is obtained for different conditions of hand rotation and proximity of the depth camera, and with a depth camera resolution of only 640×480 pixels. This performance must be also credited to the feature extraction technique, and to the size standardization and normalization processes used previously to feature extraction step.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA