Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
Journal of Zhejiang University. Science. B ; (12): 51-64, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1010597

RESUMEN

Pancreatic cancer is among the most malignant cancers, and thus early intervention is the key to better survival outcomes. However, no methods have been derived that can reliably identify early precursors of development into malignancy. Therefore, it is urgent to discover early molecular changes during pancreatic tumorigenesis. As aberrant glycosylation is closely associated with cancer progression, numerous efforts have been made to mine glycosylation changes as biomarkers for diagnosis; however, detailed glycoproteomic information, especially site-specific N-glycosylation changes in pancreatic cancer with and without drug treatment, needs to be further explored. Herein, we used comprehensive solid-phase chemoenzymatic glycoproteomics to analyze glycans, glycosites, and intact glycopeptides in pancreatic cancer cells and patient sera. The profiling of N-glycans in cancer cells revealed an increase in the secreted glycoproteins from the primary tumor of MIA PaCa-2 cells, whereas human sera, which contain many secreted glycoproteins, had significant changes of glycans at their specific glycosites. These results indicated the potential role for tumor-specific glycosylation as disease biomarkers. We also found that AMG-510, a small molecule inhibitor against Kirsten rat sarcoma viral oncogene homolog (KRAS) G12C mutation, profoundly reduced the glycosylation level in MIA PaCa-2 cells, suggesting that KRAS plays a role in the cellular glycosylation process, and thus glycosylation inhibition contributes to the anti-tumor effect of AMG-510.


Asunto(s)
Humanos , Glicosilación , Neoplasias Pancreáticas/patología , Adenocarcinoma , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Glicoproteínas , Espectrometría de Masas , Biomarcadores/metabolismo , Polisacáridos
2.
Chinese Journal of Gastroenterology ; (12): 181-185, 2023.
Artículo en Chino | WPRIM | ID: wpr-1016039

RESUMEN

O⁃glycosylation is a common post⁃translational modification of mucins, widely present in both normal and tumor cells. In colorectal cancer (CRC) cells, there is a varying degree of dysregulation in O ⁃ glycosylation ⁃ related glycosyltransferases, molecular chaperones, and surface Tn antigen, sTn antigen, and T antigen. These dysregulations play a distinctive role in the occurrence and development of CRC, including invasion and metastasis, abnormal apoptosis and proliferation, immune escape, etc. They are extensively studied as novel tumor biomarkers and potential therapeutic targets. This article provides a comprehensive review of progress of research on mucin⁃type O⁃glycosylation and its relevance to the occurrence and development of CRC and its clinical application.

3.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1284-1290, 2023.
Artículo en Chino | WPRIM | ID: wpr-1015640

RESUMEN

O-linked-N-acetylglucosamine (O-GlcNAc) modification is a unique post-translational modification that plays a regulatory role in many cellular processes, such as transcription, intracellular signaling, endocytosis, and protein stability. Epidermal growth factor (EGF) domain-specific O-GlcNAc transferase (EOGT) is an endoplasmic reticulum (ER) resident protein which can glycosylate the residues of Ser or Thr of secreted or membrane (transmembrane) glycoproteins containing EGF domain. Notch signaling pathway is involved in cell-to-cell communication which regulates cell biological processes through interactions between adjacent cells. To date, EOGT-mediated O-GlcNAc modification has been found to be involved in many human diseases, and shown significant relation with Notch signaling pathway. However, the specific molecular mechanisms have not been fully elucidated. In this review, we briefly introduce recent studies regarding to the roles of EOGT-mediated O-GlcNAc modification and its correlation with Notch signaling pathway in human diseases.

4.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1000-1007, 2023.
Artículo en Chino | WPRIM | ID: wpr-1015616

RESUMEN

Neuropathic pain is a common chronic pain that affects human health worldwide. As an important mediator of excitatory conduction in neurons, ion channels are important targets for mechanism research and drug research in this field. T-type calcium channel(Cav3) can be activated transiently when neurons are close to the resting potential of -70 mV, resulting in a transient Ca

5.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 1292-1298, 2023.
Artículo en Chino | WPRIM | ID: wpr-1014724

RESUMEN

Farnesoid X receptor (FXR) is a nuclear receptor activated by bile acid that is involved in regulating gene expression related to bile acid, fat, glucose, and amino acid metabolism. The activity of FXR is regulated by a variety of post-translational modifications. Common post-translational modifications of FXR include O-GlcNAcylation, phosphorylation, acetylation, sumoylation, methylation, etc. These post-translational modifications may affect FXR binding of DNA and ligand, heterodimerization, and subcellular localization, and may specifically regulate downstream gene transcription and expression. Different post-translational modifications can lead to changes in FXR stability and biological function, which are closely related to the occurrence of diseases. This paper aims to review the post-translational modification of FXR in the past five years and the mechanisms involved in disease regulation, to explore the effects of post-translational modification on the physiological function of FXR and to provide a theoretical basis for mechanism research targeting FXR.

6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 886-901, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1011001

RESUMEN

In carbohydrate chemistry, the stereoselective synthesis of 1,2-cis-glycosides remains a formidable challenge. This complexity is comparable to the synthesis of 1,2-cis-β-D-mannosides, primarily due to the adverse anomeric and Δ-2 effects. Over the past decades, to attain β-stereoselectivity in D-rhamnosylation, researchers have devised numerous direct and indirect methodologies, including the hydrogen-bond-mediated aglycone delivery (HAD) method, the synthesis of β-D-mannoside paired with C6 deoxygenation, and the combined approach of 1,2-trans-glycosylation and C2 epimerization. This review elaborates on the advancements in β-D-rhamnosylation and its implications for the total synthesis of tiacumicin B and other physiologically relevant glycans.


Asunto(s)
Glicósidos , Manósidos , Glicosilación , Estereoisomerismo
7.
Journal of China Pharmaceutical University ; (6): 674-681, 2023.
Artículo en Chino | WPRIM | ID: wpr-1003588

RESUMEN

@#Glycosylation of proteins, one of the most prevalent and complex post-translational modifications occurring in nature, plays a crucial role in regulating protein net charge, conformation, binding properties and, ultimately, biological function.Traditional structural techniques are not amenable for glycoproteins due to the inherent heterogeneity of oligosaccharides.With the advances in analytical technique, mass spectrometry displays an increasingly crucial role in elucidating the structure of glycoproteins.Mass spectrometry-based proteomic technique can dissect the chemical composition and site information of low-abundance glycosylation at the peptide level.Instead, native mass spectrometry (nMS) can analyze intact glycoproteins while maintaining the information for glycan heterogeneity, and the insights into the regulatory effects of glycosylation on protein higher order structures and interactions with other proteins or ligands.As a representative structural mass spectrometry tool, ion mobility-based nMS strategy is powered by its conformer-resolving capability and by the feasibility of conformer manipulation through collision-induced unfolding.Consequently, native IM-MS analysis can provide rich information of dynamic protein conformations, allowing for the rapid identification and differentiation of protein isoforms in an unprecedented manner.In this review, we briefly introduced two emerging native IM-MS analytical modes, dynamic conformer-resolving mode and glycoform-resolving mode.Besides, we also discussed the recent progress of conformational and topological characterization of intact glycoproteins with three typical model systems based on two above-mentioned emerging modes of native IM-MS.

8.
Journal of China Pharmaceutical University ; (6): 662-673, 2023.
Artículo en Chino | WPRIM | ID: wpr-1003587

RESUMEN

@#N-linked glycosylation is a common post-translational modification on proteins, which exhibits the same macro-heterogeneity of modification site as other small molecule modifications (such as methylation, acetylation, phosphorylation), i.e., the amino acid sequence of a protein has multiple putative modification sites. However, compared to small molecule modifications with single structures, N-glycosylation modification have tens of thousands of structures from multiple structural dimensions such as different monosaccharide compositions, sequence structures, linking structures, isomerism, and three-dimensional conformation.This results in additional micro-heterogeneity of modification site of N-glycosylation, i.e., the same N-glycosylation site can be modified with different glycans with a certain stoichiometric ratio.N-glycosylation modification regulates the structure and function of N-glycoproteins in a site- and structure-specific manner, and differential expression of N-glycosylation under disease conditions needs to be characterized through site- and structure-specific quantitative analysis.This article mainly introduces the latest development of mass spectrometry-based site- and structure-specific quantitative N-glycoproteomics and its applications in biomedical fields.

9.
Chinese Journal of Biologicals ; (12): 200-2023.
Artículo en Chino | WPRIM | ID: wpr-974734

RESUMEN

@#Objective To optimize the expression of recombinant human growth hormone-Fc(rhGH-Fc)fusion protein in CHO cells in order to obtain better glycosylation ratio and lower content of highmannose.Methods CHO cells expressing rhGH-Fc were cultured in a 7 L bioreactor.The glycosylation modifications of rhGH-Fc were adjusted by improving the composition of feeding media(using three commercial media:Gly-1:EX-CELL Glycosylation Adjust,Gly-2:SHEFF-CHO PLUS PG ACF and Gly-3:EfficientFeed C + AGT Supplement & GlycanTune C + Total Feed),and the glycosylation type and proportion of the target proteins were analyzed by mass spectrometry.Results The G0F(main glycosylation types:G0,G1 and G2;F:fucose)of Gly-1,Gly-2 and Gly-3 were 32.89%,58.66% and 33.28%,the G1F were 31.39%,18.03%and 34.90%,and the G2F were 31.39%,18.03% and 34.90%,respectively.Gly-1 and Gly-3 made the target protein contain less G0F while more G2F;Gly-3 feeding scheme-showed less high mannose modification than the other two schemes.Conclusion Gly-1 medium changed the glycosylation modification from G0F to G1F and G2F,while Gly-2 medium changed that from G2F and G1F to G0F.However,Gly-3 medium changed the glycosylation modification from G0F to G1F and G2F,and the contentof high mannose was less than 5%,which may have a better effect on modifying glycosylation type and proportion of the target protein.

10.
Chinese Journal of Contemporary Pediatrics ; (12): 223-228, 2023.
Artículo en Chino | WPRIM | ID: wpr-971064

RESUMEN

Phosphomannomutase 2 deficiency is the most common form of N-glycosylation disorders and is also known as phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG). It is an autosomal recessive disease with multi-system involvements and is caused by mutations in the PMM2 gene (OMIM: 601785), with varying severities in individuals. At present, there is still no specific therapy for PMM2-CDG, and early identification, early diagnosis, and early treatment can effectively prolong the life span of pediatric patients. This article reviews the advances in the diagnosis and treatment of PMM2-CDG.


Asunto(s)
Humanos , Niño , Trastornos Congénitos de Glicosilación/terapia , Mutación
11.
J. inborn errors metab. screen ; 11: e20220010, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1448573

RESUMEN

Abstract We aimed to characterize the clinical spectrum of patients diagnosed with SRD5A3-CDG, a subtype of congenital disorders of glycosylation (CDG) due to variants in the steroid 5a-reductase type 3 (SRD5A3) gene. It presents with multi-systemic involvement including neurological disability, dermatologic abnormalities, and ophthalmological defects. We conducted a cross-sectional study of children (n=6, ages 4-16 years) with a confirmed diagnosis of SRD5A3-CDG (c.57G>A, p.W19X). Families completed a detailed medical history questionnaire, two quality of life measures, and an adaptive behavior scale. Prevalent clinical features in our cohort included visual impairment (6/6), developmental delay (6/6), nystagmus (5/6), retinal dystrophy (4/6), and hypotonia (3/6). The Vineland Adaptive Behavior Scales demonstrated deficits across all functional domains (Composite Mean 36.17 ± 26.88), although one child did not show significant deficits. The QI-Disability Form demonstrated a mean total score of 64.8 (±12.7), and the PedsQL-Family Impact Module demonstrated a mean total score of 56.5 (±31.5). Vineland composite scores did not correlate with levels of disability captured by the QI-Disability Form (Pearson Correlation range -0.63 to +0.69, p>0.05 on all subscales). Ultimately, despite genotypic homogeneity, there is notable variability in adaptive functioning and quality of life among affected children that does not correlate with age.

12.
J. inborn errors metab. screen ; 11: e20220005, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1430698

RESUMEN

Abstract Congenital muscular dystrophies (CMDs) are inherited, progressive and heterogeneous muscle disorders. A group of CMDs are dystroglycanopathies, also called α-dystroglycanopathies, where there is an abnormal glycosylation of protein α-dystroglycan. Hypoglycosylation of α-DG results in different severities of congenital muscular dystrophies and they present with progressive muscle weakness and loss of motor functions. This article first focuses on the CMDs, their classification according to the observed symptoms or the protein involved in the resulting phenotype. We then focus on dystroglycanopathies, the importance of its correct O-glycosylation of the α-dystroglycan given its important structural function, considering the enzymes involved in said glycosylation and the phenotypes that can result, to finally address current therapeutics for these diseases with the aim of increasing current knowledge.

13.
Acta Pharmaceutica Sinica ; (12): 750-759, 2023.
Artículo en Chino | WPRIM | ID: wpr-965632

RESUMEN

This study aimed to assess the hypoglycemic activity, and in vitro inhibition of α-glucosidase, inhibition of the advanced glycation end products (AGEs), and total antioxidant capacity were used to clarify its bioactivity. Furthermore, the potential hypoglycemic active chemical constituents in the aqueous extract of Osmanthus fragrans var. thunbergii flower were characterized using high performance liquid chromatography-electrospray ionization-quadruple time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) method. The result showed that in vitro inhibition of α-glucosidase of the extract (IC50 = 2.11 ± 0.26 mg·mL-1) were similar to acarbose (IC50 = 2.88 ± 0.32 mg·mL-1), and it inhibited the AGEs formation and the total antioxidant capacity in a certain extent. Based on the MS fragmentation pathway analysis of reference chemical acteoside contained in this extract, and related references, 73 constituents were tentatively identified from the aqueous extract of Osmanthus fragrans var. thunbergii flower, including 58 phenylethanoids, 8 caffeoylquinic acids, 1 flavonoid vicenin-2, and 6 common organic chemicals in plant. Furthermore, 8 unknown alkaloids were characterized in this work. Among of these chemicals, 61 phenylethanoids were supposed to be detected for the first time. In conclusion, this work disclosed the potential hypoglycemic active constituents of Osmanthus fragrans var. thunbergii flower.

14.
Acta Pharmaceutica Sinica ; (12): 156-161, 2023.
Artículo en Chino | WPRIM | ID: wpr-964287

RESUMEN

Galectin-3 (Gal-3) belongs to the galectin family and is specific in binding β-galactoside. Through its C-terminal domain, Gal-3 binds to the galactoside group of the glycosylated insulin receptor (IR) and inhibits IR signaling pathway, which leads to the insulin resistance. Thus, Gal-3 is a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes. Here we report a simple Gal-3 screening model based on the property that Gal-3 binds to the galactoside. We expressed and purified human Gal-3 in Escherichia coli (E.coli), and labeled it with fluorescein isothiocyanate (FITC) in vitro. After incubating FITC labeled Gal-3 (Gal-3-FITC) with PANC-1 cells, which express glycosylated membrane protein, PANC-1 cells started to show green fluorescent signal due to the Gal-3-FITC binding to the glycosylated membrane protein. Gal-3 inhibitor disrupts the binding of Gal-3-FITC and PANC1 cells, subsequently leads to the decrease of the fluorescent signal in PANC-1 cells. We can evaluate the inhibitory efficiency of Gal-3 inhibitors through measurement of the fluorescent signal. Further studies show this model is simple, stable, and repeatable with a Z' factor between 0.7 and 0.85. In sum, we have successfully established an in vitro high-throughput screening model for Gal-3 inhibitors.

15.
Chinese Journal of Neurology ; (12): 1034-1043, 2023.
Artículo en Chino | WPRIM | ID: wpr-994929

RESUMEN

Objective:To summarize the clinical manifestations, gene variations, diagnosis and treatment of 3 cases with SLC35A2 variations characterized by congenital glycosylation disorder Ⅱm (CDG Ⅱm). Methods:A total of 3 patients admitted to the Department of Pediatrics of Xiangya Hospital of Central South University in China from 2018 to 2020 were examined in detail. The studies till January 2022 were searched with key words of "congenital disorders of glycosylation Ⅱm", " SLC35A2" and "CDG Ⅱm" in both English and Chinese in the databases of China National Knowledge Infrast Ructure (CNKI), Wanfang, Online Mendelian Inheritance in Man and PubMed, and the clinical manifestations, genetic variation, treatments and prognosis of patients with SLC35A2 mutation were summarized. Results:The patients all presented with intractable infantile spasm and global developmental delay, onset in infancy. A variety of antiepileptic treatments had temporary and partial efficacy. Otherwise, proband 2 and 3 presented with abnormal glutamic-pyruvic transaminase and increased platelets. Funduscopy showed dysplasia of the retinal pigment epithelium in both eyes, and they both received D-galactose treatment. A total of 22 relevant case reports, including 99 patients, were collected. The 99 patients all were heterozygous mutations, and a total of 75 different variation sites were reported. The clinical manifestations were characterized by global developmental delay or mental retardation ( n=89), epileptic seizure ( n=75), hypotonia ( n=57), facial deformity ( n=57), skeletal abnormality ( n=50), visual impairment ( n=42), elevated glutamic-pyruvic transaminase ( n=31), gastrointestinal symptoms ( n=28), skin deformity ( n=26), microcephaly ( n=23) and congenital heart disease ( n=12). Craniocerebral magnetic resonance imaging may be normal in the early stage. With age, magnetic resonance imaging may show abnormal white matter signals, brain atrophy, dysplasia of corpus callosum, delayed myelination, enlargement of lateral ventricle, brain stem atrophy and so on. Studies have shown that galactose treatment may be effective. Conclusions:SLC35A2 variants lead to CDG Ⅱm, whose clinical manifestations mainly include epileptic encephalopathy and global developmental delay. Multiple antiepileptic therapies can temporarily or partially control seizures, while oral galactose may improve the clinical symptoms, showing its prospect as a dietary therapy.

16.
Chinese Pharmacological Bulletin ; (12): 828-831, 2022.
Artículo en Chino | WPRIM | ID: wpr-1014078

RESUMEN

Liver cancer has the characteristics of high incidence rate, high malignancy and hidden disease.At present, the treat¬ment of liver cancer mainly includes surgery, radiotherapy and chemotherapy, but the prognosis is poor.Therefore, it is very important to explore the pathogenesis of liver cancer and find ef¬fective drugs on this basis.Protein post-translational modifica¬tion is a hot topic in epigenetics.Recent studies have found that the occurrence and development of liver cancer is related to the abnormality of post-translational modification, and can be used as a target for the diagnosis and treatment of liver cancer.This article reviews the relationship between the major protein post- translational modifications discovered in recent years and liver cancer, and provides clues for the diagnosis, treatment and prognosis of liver cancer.

17.
Chinese Pharmacological Bulletin ; (12): 961-964, 2022.
Artículo en Chino | WPRIM | ID: wpr-1014046

RESUMEN

As a pulmonary complication of diabetes, diabetic pulmonary fibrosis has gradually entered people's sight, but its mechanism is still poorly understood.This is the first systematic review of the mechanisms of autonomic neuropathy, pulmonary microangiopathy, accumulation of advanced glycosylation end products, oxidative stress, inflammation, epithelial-mesenchy- mal transition and endothelial-mesenchymal transition, cell se¬nescence and I)NA damage, etc.in diabetic pulmonary fibrosis.which aims to provide inquiring ideas for exploring the specific molecule mechanism and a reference for the development of ther¬apeutic drugs for diabetic pulmonary fibrosis.,,,,.

18.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 457-463, 2022.
Artículo en Chino | WPRIM | ID: wpr-923476

RESUMEN

Objective@#To analyze changes in proteoglycan and its correlation with alveolar bone resorption in periodontitis. @*Methods @#Twelve eight-week-old C57BL/6J male mice were selected, and the periodontitis model was established by ligating the right maxillary second molar with 6-0 silk thread. The nonligated part of the left maxilla was used as the control. The mice were killed 14 days after the operation. Micro-CT was used to assess alveolar bone resorption. HE staining was used to observe the alveolar bone profile, and TRAP staining was conducted to examine the positive rate of osteoclasts. The expression of proteoglycan-related genes, such as aggrecan (ACAN), biglycan (BGN), versican (VCAN), decorin (DCN), osteoclast-related genes, such as cathepsin K (CTSK), matrix metalloprotein-9 (MMP-9), and receptor activator of nuclear factor kappa-B ligand (RANKL), and inflammation-related genes, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), was detected by real-time quantitative PCR. Additionally, the correlation of the expression of proteoglycans with osteoclast-related genes and inflammation-related genes was evaluated by Pearson correlation analysis.@* Results@#The resorption of alveolar bone on the periodontitis side increased. TRAP staining showed that the number of osteoclasts was substantially increased in the maxilla with periodontitis. Real-time quantitative PCR demonstrated that compared with the control side, the expression of proteoglycan-related genes, such as ACAN, BGN, and DCN, was decreased, whereas the expression of the VCAN gene was significantly increased in the periodontitis side. Meanwhile, the expression of osteoclast-related genes, such as CTSK, MMP-9, and RANKL, and inflammation-related genes, such as IL-1β, IL-6, and TNF-α, was markedly increased in the periodontitis side (P<0.05). Pearson correlation analysis indicated a negative correlation between the expression of proteoglycans and the mRNA levels of osteoclast-related genes and inflammation-related genes (P<0.05). @*Conclusion @#The expression of proteoglycan was closely related to alveolar bone resorption in a periodontitis model.

19.
Acta Academiae Medicinae Sinicae ; (6): 294-298, 2022.
Artículo en Chino | WPRIM | ID: wpr-927878

RESUMEN

Mucins,a family of heavily glycosylated proteins,present mainly in epithelial cells.They function as essential barriers for epithelium and play important roles in cellular physiological processes.Aberrant expression and glycosylation of mucins in gastric epithelium occur at pathological conditions,such as Helicobacter pylori infection,chronic atrophic gastritis,intestinal metastasis,dysplasia,and gastric cancer.This review addresses the major roles played by mucins and associated O-glycan structures in normal gastric epithelium.Further,we expound the alterations of expression patterns and glycan signatures of mucins at those pathological conditions.


Asunto(s)
Humanos , Mucosa Gástrica/patología , Glicosilación , Infecciones por Helicobacter/patología , Helicobacter pylori/metabolismo , Mucinas/metabolismo , Neoplasias Gástricas/patología
20.
Chinese Journal of Biotechnology ; (12): 1173-1182, 2022.
Artículo en Chino | WPRIM | ID: wpr-927772

RESUMEN

Opsin3 (OPN3) is a photoreceptor membrane protein with a typical seven-alpha helical transmembrane structure that belongs to the G-protein-coupled receptor (GPCR) superfamily and is widely expressed in brain. In recent years, it has been reported that OPN3 is also highly expressed in adipose tissue, and the protein is associated with the production of skin melanin. We found that the N82 site is the glycosylation site of OPN3. SNAP-tagTM has diverse functions and can be applied to a variety of different studies. By constructing a SNAP-tagged OPN3 recombinant protein, the distribution position of SNAP-OPN3 in cells can be clearly observed by fluorescence confocal microscopy using SNAP-Surface® 549 and SNAP-Cell® OregonGreen®, which provides a new method for studying the function of OPN3. It also shows that SNAP-tag does not affect the function of OPN3. Using the SNAP tag we found that OPN3 cannot be taken up to the cell membrane after glycosylation site mutation.


Asunto(s)
Membrana Celular , Glicosilación , Melaninas , Proteínas de la Membrana , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA