Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros








Intervalo de año
1.
International Journal of Oral Biology ; : 175-181, 2017.
Artículo en Inglés | WPRIM | ID: wpr-222401

RESUMEN

The aim of this study was to provide a basis for the molecular mechanism underlying the pharmacological action of ethanol. We studied the effects of 1-propanol on the location of n-(9-anthroyloxy)palmitic acid or stearic acid (n-AS) within the phospholipids of synaptosomal plasma membrane vesicles (SPMV). The SPMV were isolated from the bovine cerebral cortex and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL). 1-Propanol increased the rotational mobility of inner hydrocarbons, while decreasing the mobility of membrane interface, in native and model membranes. The degree of rotational mobility varied with the number of carbon atoms at positions 16, 12, 9, 6 and 2 in the aliphatic chain of phospholipids in the neuronal and model membranes. The sensitivity of increasing or decreasing rotational mobility of hydrocarbon interior or surface by 1-propanol varied with the neuronal and model membranes in the following order: SPMV, SPMVPL and SPMVTL.


Asunto(s)
1-Propanol , Carbono , Membrana Celular , Corteza Cerebral , Etanol , Hidrocarburos , Liposomas , Membranas , Neuronas , Fosfolípidos
2.
International Journal of Oral Biology ; : 159-167, 2010.
Artículo en Inglés | WPRIM | ID: wpr-92236

RESUMEN

To provide a basis for studying the pharmacological actions of tetracaine.HCl, we analyzed the membrane activities of this local anesthetic. The n-(9-anthroyloxy) stearic and palmitic acid (n-AS) probes (n = 2, 6, 9, 12 and 16) have been used previously to examine fluorescence polarization gradients. These probes can report the environment at a graded series of depths from the surface to the center of the membrane bilayer structure. In a dose-dependent manner, tetracaine.HCl decreased the anisotropies of 6-AS, 9-AS, 12-AS and 16-AP in the hydrocarbon interior of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex (SPMV), and liposomes derived from total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. However, this compound increased the anisotropy of 2-AS at the membrane interface. The magnitude of the membrane rotational mobility reflects the carbon atom numbers of the phospholipids comprising SPMV, SPMVTL and SPMVPL and was in the order of the 16, 12, 9, 6, and 2 positions of the aliphatic chains. The sensitivity of the effects of tetracaine.HCl on the rotational mobility of the hydrocarbon interior or surface region was dependent on the carbon atom numbers in the descending order 16-AP, 12-AS, 9-AS, 6-AS and 2-AS and on whether neuronal or model membranes were involved in the descending order SPMV, SPMVPL and SPMVTL.


Asunto(s)
Anisotropía , Carbono , Membrana Celular , Corteza Cerebral , Polarización de Fluorescencia , Liposomas , Membranas , Neuronas , Ácido Palmítico , Ácidos Palmíticos , Fosfolípidos , Ácidos Esteáricos
3.
The Korean Journal of Physiology and Pharmacology ; : 83-88, 2004.
Artículo en Inglés | WPRIM | ID: wpr-728498

RESUMEN

The purpose of this study was to provide a basis for studying the molecular mechanism of pharmacological action of chlorhexidine digluconate. Large unilamellar vesicles (OPGTL) were prepared with total lipids extracted from cultured Porphyromonas gingivalis outer membranes (OPG). The anthroyloxy probes were located at a graded series of depths inside a membrane, depending on its substitution position (n) in the aliphatic chain. Fluorescence polarization of n- (9-anthroyloxy)stearic acid was used to examine effects of chlorhexidine digluconate on differential rotational mobility, while changing the probes' substitution position (n) in the membrane phospholipids aliphatic chain. Magnitude of the rotational mobility of the intact six membrane components differed depending on the substitution position in the descending order of 16- (9-anthroyloxy)palmitic acid (16-AP), 12, 9, 6, 3 and 2- (9-anthroyloxy)stearic acid (12-AS, 9-AS, 6-AS, 3-AS and 2-AS). Chlorhexidine digluconate increased in a dose-dependent manner the rate of rotational mobility of hydrocarbon interior of the OPGTL prepared with total lipids extracted from cultured OPG, but decreased the mobility of membrane interface of the OPGTL. Disordering or ordering effects of chlorhexidine digluconate on membrane lipids may be responsible for some, but not all of its bacteriostatic and bactericidal actions.


Asunto(s)
Clorhexidina , Polarización de Fluorescencia , Liposomas , Lípidos de la Membrana , Membranas , Fosfolípidos , Porphyromonas gingivalis , Porphyromonas , Tiram , Liposomas Unilamelares
4.
The Korean Journal of Physiology and Pharmacology ; : 119-124, 2003.
Artículo en Inglés | WPRIM | ID: wpr-727609

RESUMEN

To elucidate the molecular mechanism of pharmacological action of local anesthetics, we studied membrane actions of tetracaine, bupivacaine, lidocaine, prilocaine and procaine. Fluorescence polarization of n- (9-anthroyloxy) stearic acid (n-AS) was used to examine the effects of these local anesthetics on differential rotational mobility of different positions of the number of synaptosomal plasma membrane vesicle (SPMV) phospholipid carbon atoms. The four membrane components differed with respect to 3, 6, 9 and 16- (9-anthroyloxy) stearic acid (3-AS, 6-AS, 9-AS and 16-AP) probes, indicating that differences in the membrane fluidity might be present. Degrees of the rotational mobility of 3-AS, 6-AS, 9-AS and 16-AP were different depending on depth of hydrocarbon interior. In a dose-dependent manner, tetracaine, bupivacaine, lidocaine, prilocaine and procaine decreased anisotropy of 3-AS, 6-AS, 9-AS and 16-AP in the hydrocarbon interior of the SPMV. These results indicate that local anesthetics have significant disordering effects on hydrocarbon interior of the SPMV, thus affecting the transport of Na+ and K+ in nerve membranes and leading to anesthetic action.


Asunto(s)
Anestésicos Locales , Anisotropía , Bupivacaína , Carbono , Membrana Celular , Polarización de Fluorescencia , Lidocaína , Fluidez de la Membrana , Membranas , Neuronas , Prilocaína , Procaína , Tetracaína
5.
The Korean Journal of Physiology and Pharmacology ; : 125-130, 2003.
Artículo en Inglés | WPRIM | ID: wpr-727912

RESUMEN

The aim of this study was to provide a basis for studying the molecular mechanism of pharmacological action of chlorhexidine digluconate. Fluorescence polarization of n- (9-anthroyloxy) stearic acid was used to examine the effect of chlorhexidine digluconate on differential rotational mobility of different positions of the number of membrane bilayer phospholipid carbon atoms. The six membrane components differed with respect to 2, 3, 6, 9, 12, and 16- (9-anthroyloxy) stearic acid (2-AS, 3-AS, 6-AS, 9-AS, 12-AS and 16-AP) probes, indicating different membrane fluidity. Chlorhexidine digluconate increased the rate of rotational mobility of hydrocarbon interior of the cultured Porphyromonas gingivalis outer membranes (OPG) in a dose-dependent manner, but decreased the mobility of surface region (membrane interface) of the OPG. Disordering or ordering effects of chlorhexidine digluconate on membrane lipids may be responsible for some, but not all of its bacteriostatic and bactericidal actions.


Asunto(s)
Carbono , Clorhexidina , Polarización de Fluorescencia , Fluidez de la Membrana , Lípidos de la Membrana , Membranas , Porphyromonas gingivalis , Porphyromonas , Tiram
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA