Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
ImplantNews ; 11(5): 595-599, 2014. tab
Artículo en Portugués | LILACS, BBO | ID: lil-731522

RESUMEN

Objetivos: avaliar o comportamento biomecânico de três tipos de conexão protética em implantes de diâmetro reduzido. Material e Métodos: implantes com diâmetro 3,25 mm (plataforma 3,4 mm) foram inseridos em polioximetileno (poliacetal) com torque máximo de 45 Ncm e receberam componentes protéticos calcináveis divididos em três grupos: G1: cone-morse (CM), hexágono interno (HI), e Hexágono externo (HE). Todo os pilares foram sobrefundidos em liga de CoCr e aparafusados com torque de 20 Ncm conforme recomendações do fabricante. A avaliação biomecânica ocorreu conforme a norma ISO 14801-2007: carregamento compressivo 30º e fadiga cíclica (f=15Hz, 5 milhões de ciclos) em ambiente seco. A análise estatística foi conduzida usando-se os testes Anova e Tukey (nível de significância 5%). Resultados: os valores compressivos médios foram: G1 (317,43 N), G2 (559,44 N), e G3 (290,83 N). Diferenças signifi cativas foram vistas entre G1 e G2 (p < 0,001) e entre G2 e G3 (p < 0,0001). Não houve diferença entre grupos no teste de fadiga. Os valores correspondentes foram: G1 (190,80 N), G2 (163,25 N), e G3 (141,77 N). Conclusões: todos os grupos demonstraram desempenho biomecânico aceitável


Objectives: to evaluate the biomechanical behavior of three types of prosthetic abutment connections in reduced implant diameters. Material and Methods: 3.25 mm-diameter dental implants (3.4 mm implant platform) were inserted in polyoxymethylene (polyacetal) resin with maximum torque of 45Ncm and received burnout prosthetic abutments divided into three groups: G1: cone-morse (CM), Internal Hex (IH), and External Hex (EH). All abutments were overcast in a CoCr alloy and fastened to 20 Ncm following manufacturer’s instructions. Biomechanical evaluation was performed according to ISO 14801-2007 standards: 30º compressive and fatigue loading (f = 15 Hz, 5 million cycles) in dry environment. Statistical analysis was conducted with Anova and post-hoc Tukey tests (5% signifi cance level). Results: mean compressive values were: G1 (317.43 N), G2 (559.44 N), and G3 (290.83 N). Signifi cant differences were seen between G1 and G2 (p < 0.001) and between G2 and G3 (p < 0.0001). No differences among groups were seen for fatigue loading. The correspondent endurance limits were: G1 (190.80 N), G2 (163.25 N), and G3 (141.77 N). Conclusions: all groups demonstrated acceptable biomechanical performance.


Asunto(s)
Diseño de Implante Dental-Pilar , Implantes Dentales
2.
The Journal of Korean Academy of Prosthodontics ; : 223-231, 2003.
Artículo en Coreano | WPRIM | ID: wpr-191517

RESUMEN

STATEMENT OF PROBLEM: Little is known about the effect of a counter-torque device and the internal hexagon of abutment on the tightening torque transmitted to the implant. PURPOSE: The purpose of this study was to examine the effect of a counter-torque device and the internal hexagon of abutment on the tightening torque transmitted to the implant. MATERIAL AND METHODS: In this study, three types of abutment were used; (1) two-piece conical abutment with hexagon, (2) two-piece conical abutment without hexagon, and (3) one-piece conical abutment without hexagon. The experimental groups were divided into five groups according to the type of abutment and the usage of a counter-torque device. Group I : two-piece conical abutment with internal hexagon was tightened without the use of a counter-torque device. Group II : two-piece conical abutment without internal hexagon was tightened without the use of a counter-torque device. Group III : one-piece conical abutment without internal hexagon was tightened without the use of a counter-torque device. Group IV : two-piece conical abutment with internal hexagon was tightened with the use of a counter-torque device. Group V : two-piece conical abutment without internal hexagon was tightened with the use of a counter-torque device. Abutments were tightened 20Ncm torque with the use of manual torque wrench and then torque values were measured by torque-gauge. After the measurement of torque values, all groups were loosened with the use of manual torque wrench and then detorque values were measured by torque-gauge. RESULTS: The results were as follows: 1. There were no differences in torque values among three types of abutment. 2. Regardless of the existence of the internal hexagon of abutment, a counter-torque device decreased the tightening torque transmitted to the implant about 92%. 3. In group III showed the highest detorque value, however there were no differences among group I, II, IV and V. CONCLUSION: Within the limitations of this study, it was concluded that the internal hexagon of abutment has no effect on the tightening torque transmitted to the implant and the detorque value of abutment screw. The use of a counter-torque device is essential to prevent microfracture on the implant-bone interface but has no effect on preload.


Asunto(s)
Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA