RESUMEN
Objective: To explore the possibility of promoting tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis in prostate cancer PC-3 cell by inhibiting Krüppel-like factor 5 (KLF5). Methods: MTT assay, flow cytometry, Western blot assay and qRT-PCR assay were deployed to detect the cell viability, apoptosis and apoptotic markers in KLF5-inhibited and TRAIL-induced PC-3 cells. Results: After KLF5 was inhibited in TRAIL-induced PC-3 cells, cell viability reduced, apoptosis enhanced, the expressions of DR4 and DR5 increased while the expression of cellular fas-associated death domain-like interleukin-1β converting enzyme inhibitory protein (c-FLIP) decreased. Conclusion: Inhibiting KLF5 suppresses cell viability by promoting TRAIL-induced apoptosis in prostate cancer cell PC-3. It may be a potential means to treat hormone-insensitive prostate cancer.
RESUMEN
We investigated the contribution of genetic variations of KLF5 to basal metabolic rate (BMR) and resting metabolic rate (RMR) and the inhibition of obesity in Korean children. A variation of KLF5 (rs3782933) was genotyped in 62 Korean children. Using multiple linear regression analysis, we developed a model to predict BMR in children. We divided them into several groups; normal versus overweight by body mass index (BMI) and low BMR versus high BMR by BMR. There were no differences in the distributions of alleles and genotypes between each group. The genetic variation of KLF5 gene showed a significant correlation with several clinical factors, such as BMR, muscle, low-density lipoprotein cholesterol, and insulin. Children with the TT had significantly higher BMR than those with CC (p = 0.030). The highest muscle was observed in the children with TT compared with CC (p = 0.032). The insulin and C-peptide values were higher in children with TT than those with CC (p= 0.029 vs. p = 0.004, respectively). In linear regression analysis, BMI and muscle mass were correlated with BMR, whereas insulin and C-peptide were not associated with BMR. In the high-BMR group, we observed that higher muscle, fat mass, and C-peptide affect the increase of BMR in children with TT (p < 0.001, p < 0.001, and p = 0.018, respectively), while Rohrer's index could explain the usual decrease in BMR (adjust r2 = 1.000, p < 0.001, respectively). We identified a novel association between TT of KLF5 rs3782933 and BMR in Korean children. We could make better use of the variation within KLF5 in a future clinical intervention study of obesity.