RESUMEN
@#Objective To analyze the expression profiles of long non-coding RNAs(lncRNA)in hippocampus of alcoholdependent mice induced by double-bottle selective drinking.Methods The alcohol-dependent mouse model was established by double-bottle selective drinking method,and the control group was set up(drinking water). Three male mice with alcohol preference more than 60% and alcohol consumption more than 10 g/(kg·24 h)in alcohol group and random three male mice in control group were selected,of which bilateral hippocampal brain tissues were isolated and stored in liquid nitrogen. LncRNA and mRNA of mouse hippocampal brain tissue RNA samples were sequenced by using Agilent-084388 microarray,and the differential expression of lncRNA in samples was detected by using ncRNA microarray. The biological processes and signaling pathways involved in differential expression of lncRNA were clustered and enriched by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis. Pearson correlation analysis was used to predict the coding genes co-expressed by each differentially expressed lncRNA. Hypergeometric distribution test was used to calculate the significance of differential gene enrichment in each corresponding transcription factor item,and Cytoscape software was used to draw a visual network diagram.Results Compared with the control group,totally 855 lncRNAs(FC ≥ 2. 0,P < 0. 05)were differentially expressed in the hippocampus of mice in alcohol group,of which 337 lncRNAs were up-regulated significantly,with NONMMUT025786.2 and NONMMUT072246.2 being the most up-regulated,and 518 significant downward adjustments were observed,with the largest downward adjustments being NONMMUT113098.1 and NONMMUT076455.1. There were 361 mRNAs differentially expressed in the two groups(FC ≥ 2. 0,P < 0. 05)with 271 mRNAs up-regulated significantly and 90 significant downward adjustments,among which,the most obvious up-regulated were Upf3b and Zfp943,and Adamts 13 and Ift 27 showed the largest downward adjustments. The differential expression of lncRNAs was most obvious in the positive regulation of cell surface,GTPase activity and cell vesicle transport;The main signaling pathways involved were propanoate metabolism,taurine metabolism,extracellular matrix receptor interaction and AMPK signaling pathway. The most abundant transcription factors were FOXL1 and LHX3,with 25 and 21 corresponding co-expressed genes,respectively.Conclusion Through high-throughput gene expression profile microarray analysis,the possible key regulatory sites of lncRNAs and mRNAs were obtained,which provided experimental basis for research of the molecular mechanism of alcohol dependence in the hippocampus.
RESUMEN
AIM: To detect the expression levels of long non-coding RNA(lncRNA)X-inactive specific transcript(XIST)and silencing information regulatory factor 2 associated enzyme 1(SIRT1)in serum of patients with type 2 diabetes mellitus(T2DM), and to explore their correlation with diabetic retinopathy(DR)and their diagnostic value. METHODS: Prospective study. A total of 214 patients with T2DM admitted to our hospital from January 2022 to February 2023 were selected as the research subjects. Based on whether retinopathy occurred, they were divided into 126 cases(126 eyes)in the non-DR group and 88 cases(88 eyes)in the DR group. An additional 130 healthy individuals who underwent a physical examination during the same period were selected as the control group. The serum levels of lncRNA XIST and SIRT1 in the three groups were measured and compared. The relationship between lncRNA XIST and SIRT1 expression with DR was analyzed using Pearson's method. The receiver operating characteristic(ROC)curve was used to evaluate the predictive value of serum lncRNA XIST, SIRT1, and their combination for DR. Multivariate Logistic regression analysis was performed to investigate the factors affecting the occurrence of DR in T2DM patients.RESULTS: Compared with the control group, the levels of serum lncRNA XIST and SIRT1 in the non-DR group and DR group were successively decreased(all P<0.05). The levels of serum lncRNA XIST and SIRT1 were positively correlated in DR patients(r=0.639, P<0.05). ROC analysis showed that the area under the curve(AUC)for predicting DR by combining serum lncRNA XIST and SIRT1 was 0.940, which was higher than the AUC by serum lncRNA XIST and SIRT1 alone(0.855, 0.875). Logistic regression analysis showed that lncRNA XIST(OR=0.752)and SIRT1(OR=0.694)were influencing factors for the occurrence of DR(both P<0.01).CONCLUSION: The serum levels of lncRNA XIST and SIRT1 are both lower in DR patients, and the combination of lncRNA XIST and SIRT1 has a better assessment capacity for the occurrence of DR.
RESUMEN
Gastric cancer (GC) is one of the most common malignant tumors in the digestive system, with high morbidity and mortality. Early clinical symptoms of GC are not obvious, and most of them have entered the advanced stage after discovery, which greatly reduces the clinical cure rate and affects the quality of life of patients, and the prognosis is very poor. In recent years, with the continuous exploration in the field of bioinformatics, it has been found that micro-RNA (miRNA) and long non-coding RNA (lncRNA) exist as non-coding RNA (ncRNA) without translation ability, and regulate the expression levels of related signal proteins by acting on a certain target, thereby activating or inhibiting a certain signaling pathway, which plays an important role in assisting diagnosis, guiding clinical medication, and judging prognosis in the progress of GC. Chinese medicine is easily accepted by patients because of its good curative effect and less side effects. In the present basic studies, with the interaction mechanism between miRNA, lncRNA and signaling pathways as the breakthrough point, various studies on the regulation of related signaling molecules and signaling pathways by Chinese medicine have been carried out. A large number of experimental data have proved that the development of GC is closely related to the interaction of miRNA, lncRNA, and related signaling pathways, and Chinese medicine, with multi-target, multi-mechanism, and multi-pathway characteristics, affects various signaling molecules and signaling pathways and intervenes in the progress of GC cells. This paper reviewed the basic research on lncRNA, miRNA molecules, and main signaling pathways involved in the occurrence and development of GC, and summarized specific molecular mechanisms of Chinese medicine in the regulation of each signaling pathway, hoping to provide references for modern research of Chinese medicine in the intervention of GC progress at the molecular level.
RESUMEN
Non-exosomal non-coding RNAs (non-exo-ncRNAs) and exosomal ncRNAs (exo-ncRNAs) have been associated with the pathological development of myocardial infarction (MI). Accordingly, this analytical review provides an overview of current MI studies on the role of plasma non-exo/exo-ncRNAs. We summarize the features and crucial roles of ncRNAs and reveal their novel biological correlations via bioinformatics analysis. The following contributions are made: (1) we comprehensively describe the expression profile, competing endogenous RNA (ceRNA) network, and "pre-necrotic" biomarkers of non-exo/exo-ncRNAs for MI; (2) functional enrichment analysis indicates that the target genes of ncRNAs are enriched in the regulation of apoptotic signaling pathway and cellular response to chemical stress, etc.; (3) we propose an updated and comprehensive view on the mechanisms, pathophysiology, and biomarker roles of non-exo/exo-ncRNAs in MI, thereby providing a theoretical basis for the clinical management of MI.
Asunto(s)
Humanos , ARN no Traducido/genética , ARN , Infarto del Miocardio/genética , Biomarcadores , Biología Computacional , MicroARNs/genéticaRESUMEN
@#ObjectiveTo establish models of Dengue virus type Ⅲ(DENV-3,DV-3)infection and antibody dependent enhancement(ADE)infection at the acute monocytic leukemia cells(THP-1),investigate the differential expression of long non-coding RNAs(LncRNAs),map the competitive endogenous RNA(CeRNA)regulatory network and predict the translation function of LncRNAs.MethodsThe culture supernatant was harvested 6 d after C6/36 cells were infected with DENV-3,the virus titer was determined by CCID50,and the type and full-length genome amplification were identified by PCR;The DENV-3 standard plasmid was amplified,identified by PCR,and the standard curve was drawn;THP-1 cells were divided into negative control group(THP-1),direct infection group(DV-3),ADE group and blank control group[1640(-)]. After 48 h of infection,the total RNA was extracted and the copy number of intracellular virus nucleic acid was measured;Through the whole transcriptome sequencing technology,the CeRNA regulatory network was constructed for the top five up-regulated and down-regulated LncRNAs in THP-1 vs DENV3,THP-1 vs ADE,DENV3 vs ADE groups,and the functions of their coding proteins were analyzed.ResultsC6/36 cells infected with DENV-3 for 3 d showed obvious cell fusion,vacuoles and abscission;The virus had a titer of about 1. 0 × 104. 64PFU/mL and was identified as DENV-3 by PCR specific primers,of which the complete gene sequence was obtained;The number of viral nucleic acid copies in ADE group was significantly higher than those in DV-3 group and blank control group;In THP-1 vs DENV-3,the expression of cytohesin interacting protein(CYTIP)was predicted to be up-regulated;In THP-1 vs ADE,the expression of kinesin family5A(KIF5A)was predicted to be down-regulated;In DENV-3 vs ADE,the expression of cluster differentiation antigen 9(CD9)and insulin like growth factor 2(IGF2)was predicted to be up-regulated. All of these differential LncRNAs had open reading frames(ORFs). Except Lnc-SH3BP1 and Lnc-RPL41,all of the other LncRNAs had internal ribosome binding site(IRES).ConclusionIn DENV-3 infection of THP-1 cells and ADE infection mediated by DENV-3,the expression of LncRNAs has changed significantly,and may regulate the process of infection through a variety of biological functions,which is helpful for a deeper understanding of the mechanism of ADE infection.
RESUMEN
@#Objective To investigate the effects of long non-coding RNA(LncRNA) growth arrest specific transcript 5(GAS5) negatively regulating nucleophosmin 1(NPM1) on cisplatin(DDP) resistance of gastric cancer cells.Methods The normal human gastric mucosa cell line GES-1 and human gastric cancer cell lines BG3-823,MGC-803 and AGS were selected as the research objects,of which the level of LncRNA GAS5 in each cell was measured by qRT-PCR.The drug resistance of AGS cells to DDP(AGS/DDP) was induced,and the experiment was divided into control group,empty plasmid group(BC group),GAS5 nonsense interference group(pLJM-GAS5 NC group) and GAS5 overexpression group(pLJM-GAS5 group).MTT method was used to determine the effect of DDP on the proliferation of AGS and AGS/DDP cells;and the levels of NPM1,multidrug resistance 1(MDR1),excision repair cross complementation group 1(ERCC1),multidrug resistance-associated protein 1(MRP1) and N-cadherin in AGS and AGS/DDP cells were measured by Western blot.Results Compared with the normal gastric mucosa GES-1 cells,the level of LncRNA GAS5 in BG3-823 and AGS cells decreased significantly,and among them,the level of LncRNA GAS5 in AGS cells was the lowest,so AGS cells were used for the follow-up experiments.Compared with the control group,the level of LncRNA GAS5 in AGS cells of BC group and pLJM-GAS5 NC group decreased significantly,while the levels of NPM1,MDRl,ERCC1,MRP1 and N-cadherin increased significantly;compared with BC group and pLJM-GAS5 NC group,the level of LncRNA GAS5 in AGS/DDP cells of pLJM-GAS5 group increased significantly,while the levels of NPM1,MDR1,ERCC1,MRP1 and N-cadherin decreased significantly;after treatment with DDP of the same concentration(except 0 μmol/L),compared with the control group,the inhibition rate of AGS/DDP cell proliferation in BC group and pLJM-GAS5 NC group decreased significantly;compared with BC group and pLJM-GAS5 NC group,the inhibition rate of AGS/DDP cell proliferation in pLJM-GAS5group was significantly higher.The semi inhibitory concentration(IC_(50)) of DDP on AGS/DDP cells in pLJM-GAS5 group for 48 h was(65.38±5.04) μmol/L,which was significantly lower than(120.74±4.17) μmol/L and(120.24±4.29) μmol/L in BC group and pLJM-GAS5 NC group.Conclusion Up-regulating the level of LncRNA GAS5 in AGS/DDP cells can reverse the drug resistance of AGS/DDP cells,which may be related to the down-regulation of NPM1expression
RESUMEN
Breast cancer is a malignant tumor that seriously endangers women's lives. The prognosis of breast cancer patients differs among molecular types. Compared with other subtypes, triple-negative breast cancer (TNBC) has been a research hotspot in recent years because of its high degree of malignancy, strong invasiveness, rapid progression, easy of recurrence, distant metastasis, poor prognosis, and high mortality. Many studies have found that long non-coding RNA (lncRNA) plays an important role in the occurrence, proliferation, migration, recurrence, chemotherapy resistance, and other characteristics of TNBC. Some lncRNAs are expected to become biomarkers in the diagnosis and prognosis of TNBC, and even new targets for its treatment. Based on a PubMed literature search, this review summarizes the progress in research on lncRNAs in TNBC and discusses their roles in TNBC diagnosis, prognosis, and chemotherapy with the hope of providing help for future research.
Asunto(s)
Humanos , Femenino , Neoplasias de la Mama Triple Negativas/genética , ARN Largo no Codificante/genética , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión GénicaRESUMEN
AIM: To investigate the expression and diagnostic value of long non-coding RNA(LncRNA)hypoxia-inducible factor 1 alpha antisense RNA 1(HIF1A-AS1)in serum of patients with proliferative diabetic retinopathy(PDR).METHODS: A total of 160 patients with diabetic retinopathy(DR)admitted to our hospital from July 2019 to July 2021 were selected as the research objects. According to the degree of disease, they were divided into PDR group(80 cases)and nonproliferative diabetic retinopathy(NPDR)group(80 cases). At the same time, 100 healthy cases in our hospital were selected as the control group. Detect and compare serum triglyceride(TG), total cholesterol(TC), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), fasting blood glucose(FBG)and the level of glycosylated hemoglobin A1c(HbA1c); The expression level of LncRNA HIF1A-AS1 in serum was detected by real-time fluorescence quantitative PCR(qRT-PCR)method; Logistic regression was used to analyze the risk factors that affected the occurrence of PDR; Receiver operating characteristic curve(ROC)was used to analyze the clinical value of LncRNA HIF1A-AS1 level in the diagnosis of PDR. RESULTS: The expression level of LncRNA HIF1A-AS1 in the serum of the patients in the PDR group was significantly higher than that in the NPDR group and the control group, and the NPDR group was higher than the control group(P<0.05); The course of disease, HbA1c, TC, TG, LDL-C, FBG levels in the PDR group and the NPDR group were significantly higher than those of the control group, the HDL-C level in the PDR group was significantly lower than that in the control group(P<0.05); The level of LncRNA HIF1A-AS1 was positively correlated with the course of disease, HbA1c, TC, TG, LDL-C and FBG(P<0.05), and negatively correlated with HDL-C(P<0.05); Logistic regression analysis showed that the LncRNA HIF1A-AS1, course of disease, FBG, HbA1c, TC, TG, LDL-C were all risk factors for PDR(P<0.05); ROC results showed that the area under the curve(AUC)of the LncRNA HIF1A-AS1 level predicting PDR was 0.766(95%CI: 0.692~0.829), the corresponding sensitivity was 66.25% and the specificity was 78.75%.CONCLUSION: The level of LncRNA HIF1A-AS1 in the serum of PDR patients is up-regulated, it is a risk factor for the occurrence of PDR and it can be used as a potential serological indicator for predicting the occurrence of PDR.
RESUMEN
Long non-coding RNA KCNQ1OT1 is highly expressed in a variety of tumors, but there are few studies in gastric cancer and the results are inconsistent. The relevant research of its specific mechanism in gastric cancer is also scarce. Through the analysis of several TCGA public databases, we found that KCNQ1OT1 was generally highly expressed in gastric cancer, and the prognosis of gastric cancer patients with a high expression of KCNQ1OT1 was poor. The expression of KCNQ1OT1 is closely related to many clinical factors of gastric cancer, especially the mutation of TP53, and its expression is significantly related to immune cell infiltration. KCNQ1OT1 is generally highly expressed in gastric cancer cell lines. Knockdown of KCNQ1OT1 can inhibit the proliferation of gastric cancer cell lines. Co- expression network analysis showed that its expression was closely related to tumor metabolism. Glutaminase 1 (GLS1) is generally highly expressed in gastric cancer, which is closely related to a poor prognosis. There is a significant correlation between the expression of KCNQ1OT1 and GLS1. Knockdown of KCNQ1OT1 can inhibit the expression of GLS1 mRNA, and overexpression of GLS1 can partially rescue the proliferation of gastric cancer cells caused by knockdown of KCNQ1OT1. Therefore, we speculate that KCNQ1OT1 may regulate the growth of gastric cancer cells through GLS1. Our study explored the role of KCNQ1OT1 in gastric cancer through bioinformatics database and experiments, suggesting that KCNQ1OT1 may promote the development of gastric cancer by regulating glutamine metabolism, which provides a new target for the clinical research on targeted treatment in gastric cancer.
RESUMEN
Diabetes is a clinical syndrome caused by a variety of factors. It often causes multiple systemdamage, leading to chronic progressive lesions of the eye, kidney, blood vessels, heart, nerves and otherorgans. At present, its etiology and pathogenesis are not fully clarified, and there is a lack of effectivecure. Further exploration of the molecular regulatory mechanisms that drive diabetes and itscomplications, identifying specific biomarkers and molecular therapeutic targets, is undoubtedly aneffective strategy to prevent the onset and development of diabetes and improve the quality of life ofpatients. Long non-coding RNA (lncRNA) is an important regulator of body normal activity and diseasedevelopment. Abnormal expression and mutation are one of the main causes of diabetes and many otherdiseases. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a newly discovered lncRNA molecule inrecent years. It has attracted much attention because of its important regulatory role and diverse biologicaleffects in diabetes and its complications. This article summarizes the molecular regulation mechanism andrelated biological functions of lncRNA NEAT1 in diabetes and its complications in order to provide a newscientific reference for early prevention, diagnosis and molecular targeted therapy of diabetes.
RESUMEN
Long non-coding RNA (lncRNA) are non-coding RNA (ncRNA) greater than 200nt inlength, which were initially considered as transcriptional " junk" with no biological function. As researchprogressed, lncRNA were found to be involved in many biological regulatory processes, such aschromosome silencing, chromatin modification, transcriptional activation and interference. Thesebiological regulatory processes are closely related to the structure and spatial and temporal specificexpression of lncRNA. In addition, the corresponding regulatory mechanisms of lncRNA with differentstructures and locations are different. When lncRNA are located in the nucleus, they mostly regulate geneexpression at the transcriptional level and epigenetically, including histone modifications, DNAmethylation, chromosome remodeling and other modification processes. In contrast, lncRNA in thecytoplasm mostly play regulatory roles at the post-transcriptional and translational levels, and themechanisms of action and functions of lncRNA vary among different organelles, all of which illustrate theimportance of the location of lncRNA on their functional performance. In addition, exosomes are also richin lncRNA, and these lncRNA can be delivered to the corresponding sensitive cells through intercellularcommunication to generate the corresponding regulatory mechanisms. In addition, aberrant expression oflncRNA in different structures is often a key factor in the development and progression of related diseasesand cancers. Studying the enrichment of lncRNA in different subcellular structures can help understandthe specific roles played by lncRNA in regulating body homeostasis, disease and cancer occurrence anddevelopment, as well as growth and development of plants and animals, as well as provide a newtheoretical basis for subsequent studies on targeted therapies and improving animal productionperformance. This paper outlines the latest research progress on the different regulatory mechanisms oflncRNA in chromosomes, membraneless substructures, cytoplasm (endoplasmic reticulum, ribosomes, mitochondria, lysosomes), exosomes and other locations, as well as describes the processes of relateddiseases and cancers caused by lncRNA abnormalities within the corresponding structures. Finally, anoutlook on lncRNA research is given with the aim of providing a corresponding theoretical basis for futurestudies.
RESUMEN
Copy number variations (CNVs), which can affect the role of long non-coding RNAs (lncRNAs), are important genetic changes seen in some malignant tumors. We analyzed lncRNAs with CNV to explore the relationship between lncRNAs and prognosis in bladder cancer (BLCA). Messenger RNA (mRNA) expression levels, DNA methylation, and DNA copy number data of 408 BLCA patients were subjected to integrative bioinformatics analysis. Cluster analysis was performed to obtain different subtypes and differently expressed lncRNAs and coding genes. Weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression gene and lncRNA modules. CNV-associated lncRNA data and their influence on cancer prognosis were assessed with Kaplan-Meier survival curve. Multi-omics integration analysis revealed five prognostic lncRNAs with CNV, namely
RESUMEN
The skeletal muscle is an important part of the animal body, which is closely related to body movement, energy consumption, production performance and its development process is regulated by many factors. The molecular mechanism of skeletal muscle growth and development is not only closely related to animal husbandry production, but also provides a theoretical basis for the treatment of muscle dis-eases, such as amyotrophic muscular dystrophy, and so on. Non-coding RNA (ncRNA) is a kind of RNA without coding ability, in which circular RNA (circRNA), long non-coding RNA (lncRNA) and micro RNA (miRNA) have been proved to play an important role in the development of skeletal muscles. miR-NA can specifically bind to the 3′ untranslated region (3′ UTR) of the target gene through its seed se-quence, so as to inhibit the translation process of the target gene or directly degrade the target gene, and become a prominent participant in a variety of biological processes. Studies have shown that circRNA, ln-cRNA, pseudogenes and mRNA with miRNA response elements (MRE) can competitively combine miRNA to regulate gene expression, forming a competing endogenous RNA (ceRNA) regulatory network model. This hypothesis subverts the previous concept of unidirectional regulation of target genes by miRNA, and endows them with new biological functions in transcriptome, which is of great biological significance. In recent years, it has been found that ceRNA plays an important regulatory role in the growth and development of skeletal muscles. This paper reviews the role of miRNA, lncRNA and circRNA in the proliferation and differentiation of animal skeletal muscle cells, which is an important member of ceRNA mechanism, in order to broaden the research direction of skeletal muscle mechanism and provide new ideas for the development of animal husbandry and the treatment of muscle diseases.
RESUMEN
Long non-coding RNAs (lncRNAs) are non-coding RNAs (ncRNAs) that are more than 200 nucleotides in length, without protein-coding functions. More than 90% of the transcripts from the genome are ncRNA transcripts. LncRNAs have been determined to play unique roles in various biological processes with their specific structures and functions, and have emerged as a hot spot in gene-characteristics, function-identification, and biological process regulation. Previous work has confirmed that lncRNAs are involved in pathogenesis of clinical diseases, especially in tumorigenesis. In the postgenomics era, prevention, diagnosis and prognosis in certain diseases could be processed by detection on lncRNA expression alteration, phenotype changes and molecular mechanisms that are involved. Here, we defined lncRNAs, listed the strategies and methods of genetic identification, enumerated methods in spatial structure inspection and functional identification, and showed the classification of lncRNAs. Moreover, lncRNA participated in tumorigenesis. We took the most classic tumor suppressor p53 as an example, as p53-related lncRNAs are involved in colorectal cancer (CRC). We summarize the expression alterations, interaction molecules and signaling pathways of these lncRNAs Finally, the clinical application value of these lncRNAs are estimated. Collectively, lncRNAs may function as biomarkers, and will provide series of brand new, accurate and unique targets for diverse diseases including CRC.
RESUMEN
ILF3 antisense RNA 1 (ILF3-AS1), the antisense RNA of interleukin enhancer binding factor 3 (ILF3), is a lncRNA located on chromosome 19p13. 2. ILF3-AS1 played a key role in the occurrence and development of a variety of tumors, but its role in cervical cancer had not been explored yet. Therefore, we first used TCGA and GTEx database to conduct bioinformatics analysis. The results suggested that ILF3-AS1 was down-regulated in cervical cancer tissues (P < 0. 001) and was associated with a good prognosis (P = 0. 045). The qRT-PCR experiment showed that expression of ILF3-AS1 in cervical cancer tissues and SiHa, HeLa, CaSki cervical cancer cell lines was lower than that in control groups. Subsequently, overexpressing of ILF3-AS1 can significantly inhibit the cancer cell viability and stimulate apoptosis (P<0. 001). Analysis using the Star Base v3. 0 database suggested that ILF3-AS1 can target miR-130a-3p; while miR-130a-3p may target PTEN. The qRT-PCR test showed that the expression of miR-130a-3p in cervical cancer was significantly higher than that in normal cervical tissues (P < 0. 01). The results of the luciferase reporter assay showed that ILF3-AS1 can specifically bind to miR-130a-3p (P<0. 01). After overexpression of ILF3-AS1 in HeLa cells, the expression of miR-130a-3p was significantly down-regulated (P < 0. 01). Co-transfection with pcDNA3. 1-ILF3-AS1 and miR-130a-3p mimics, the inhibitory effect of LF3-AS1 on cell proliferation can partially be reversed (P<0. 001). After HeLa cells overexpressed ILF3-AS1, the expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN) mRNA (P < 0. 001) and proteins (P < 0. 001) significantly increased; when miR-130a-3p mimics was simultaneously used in HeLa cell, the increased expression of PTEN mRNA (P <0. 001) and proteins (P < 0. 001) was notably inhibited. In summary, ILF3-AS1 inhibited the proliferation of cervical cancer cells by sponging miR-130a-3p to regulate the expression of PTEN.
RESUMEN
@#The long non-coding RNAs (lncRNAs) are the most prevalent and functionally diverse member of the non-coding RNA (ncRNA). The lncRNA has previously been considered to be a form of transcriptional “noise” but recent studies have found that the lncRNA to be associated with various disease conditions. It has also been found to play important roles in various physiological processes such as haemopoiesis, where lncRNA is reported to act as a fine-tuner of this very important process. To date, the effects of dysregulated lncRNA in thalassaemia has not been fully explored. This review article focuses on the possible roles of dysregulated lncRNAs in the pathogenesis of thalassaemia.
RESUMEN
Objective: To investigate the expression of long non-coding RNA(lncRNA) SNHG3 in esophageal squamous cell carcinoma (ESCC) and its effect on the migration and invasion of ECA-109 cells. Methods: Samples of tumor and corresponding para-carcinoma tissues were collected from 60 patients with ESCC, who were enrolled in Anyang Tumor Hospital from June 2011 to June 2014. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of lncRNA SNHG3 in ESCC tumor and para-carcinoma tissues, ECA-109 ESCC cells, and HEEC human normal esophageal epithelial cells. The correlation between lncRNA SNHG3 expression and clinical characteristics of patients with ESCC was assessed. ECA-109 cells were transfected with siRNA-SNHG3 plasmids to knockdown lncRNA SNHG3 expression. The correlation between lncRNA SNHG3 expression and patient prognosis was determined by Kaplan-Meier analysis. Transwell assay was used to investigate the migration and invasion abilities of ECA-109 cells. SNAIL and TWIST mRNA and protein levels in ECA-109 cells were detected by qRT-PCR and Western blot assay, respectively. Results: The expression level of lncRNA SNHG3 was significantly higher in ESCC tumor tissues compared to that in pericarcinomatous tissues and in ECA-109 cells compared to that in HEEC cells (both P<0.05). LncRNA SNHG3 expression in ESCC cells was significantly correlated with tumor differentiation, TNM stage, and lymph node metastasis (P< 0.05). LncRNA SNHG3 expression in ECA-109 cells decreased significantly upon transfection with the siRNA-SNHG3 plasmid (P<0.05). High expression of lncRNA SNHG3 was significantly correlated with poor prognosis in patients with ESCC. After lncRNA SNHG3 knockdown, the migration and invasion of ECA-109 cells and the mRNA and protein expression levels of SNAIL and TWIST were reduced significantly (P<0.05). Conclusions: LncRNA SNHG3 is highly expressed in ESCC tumor tissues and cells and promotes the migration and invasion of ECA-109 cells by regulating the expression of SNAIL and TWIST proteins.
RESUMEN
@# Objective: To investigate the effect of long non-coding RNA (lncRNA) lung cancer associated transcript 1 (LUCAT1) on proliferation and migration of clear cell renal cell carcinoma (ccRCC) 786-O cells and the underlying mechanism. Methods: A total of 40 pairs of pathologically confirmed tumor tissues and corresponding adjacent normal tissues from ccRCC patients, who underwent surgical resection in the Department of Urology, the First People's Hospital of Yichang during June 2013 and June 2017, were selected for this study. ccRCC cell lines (786-O, ACHN, UM-RC-2) and normal renal epithelial KiMA cells were also used in this study. qPCR was used to detect the mRNA expressions of LUCAT1, miR-199a-5p and hypoxia inducible fator 1α (HIF-1α) in above mentioned tissues and cell lines; CCK-8 assay was used to evaluate the proliferation of 786-O cells; Transwell assay was used to evaluate the migration of 786-O cells; Dual luciferase reporter gene assay was performed to validate the relationship between LUCAT1 and miR-199a-5p; and Western blotting was conducted to detect the effect of LUCAT1 and miR-199a-5p on the protein expression of HIF-1α. Results: LUCAT1 was significantly up-regulated in ccRCC tissues and cell lines (all P<0.01), and its knockdown significantly inhibited the proliferation and migration of 786-O cells (all P<0.01). miR-199a-5p was low-expressed in ccRCC tissues and cell lines (all P<0.01), StarBase analysis showed that LUCAT1 contained a conserved target site for miR-199a-5p. miR-199a-5p exerted significant suppression on the luciferase activity of LUCAT1-Wt (P<0.01), and LUCAT1 knockdown significantly reduced miR-199a-5p expression (P< 0.01). LUCAT1 was low-expressed in 786-O cells transfected with miR-199a-5p mimics, however, it was attenuated after co-transfection with LUCAT1. The mRNA and protein expressions of HIF-1α in 786-O cells transfected with miR-199a-5p mimics were up-regulated, which was then reversed by LUCAT1 over-expression (P<0.05 or P<0.01). miR-199a-5p over-expression suppressed the proliferation and migration of 786-O cells, which was partially attenuated by LUCAT1 transfection (P<0.05 or P<0.01). Conclusion: LUCAT1 exerts oncogenic function in ccRCC via regulating miR-199a-5p/HIF-1α axis.·
RESUMEN
@#[Abstract] Objective: To investigate the expression of long non-coding RNA (lncRNA) DiGeorge syndrome critical region gene 5 (DGCR5) in esophageal squamous cell carcinoma (ESCC) tissues, and to analyze its relationship with clinicopathological features and prognosis of ESCC patients. Methods: The expression of DGCR5 in ESCC data set from TCGA database was analyzed by bioinformatics method. Sixty pairs of ESCC tissues and para-cancerous tissues resected at the Fourth Hospital of Hebei Medical University from August 2016 to March 2017 were collected for this study. The expression of DGCR5 in ESCC tissues was detected by qPCR. The correlation between the expression of DGCR5 and the clinicopathological features and prognosis of ESCC patients was analyzed. Results: TCGAdatabase analysis showed that the expression of DGCR5 in ESCC tissues was significantly higher than that in normal esophageal tissues (P<0.01). The expression of DGCR5 in ESCC tissues was significantly higher than that in para-cancerous tissues (P<0.01). The expression level of DGCR5 was significantly correlated with TNM staging and lymph node metastasis in ESCC patients (all P<0.05). Kaplan-Meier univariate analysis showed that the 2-year survival rate of ESCC patients with high DGCR5 expression was significantly lower than that of patients with low expression (P<0.05). Conclusion: DGCR5 is highly expressed in ESCC tissues and is closely related to TNM staging, lymph node metastasis and poor prognosis, which may serve as a molecular marker for early diagnosis and prognosis prediction of ESCC.
RESUMEN
@#[Abstract] Objective: To investigate the effect of long non-coding RNA (lncRNA)-CCAT2 on the proliferation and cell cycle of cervical cancer cells. Methods: The expression of CCAT2 in 3 cervical cancer cell lines (HeLa, C-33A, and CaSki) was detected by qPCR and the cell line with the highest expression level was selected for subsequent experiments. CCAT2 overexpression and interference vectors were designed and synthesized. After transfection, qPCR was performed to detect the transfection efficiency. The cells were divided into 5 groups: control, sh-EV (empty vector), overExp-EV , sh-CCAT2, and overExp-CCAT2. MTT assay was performed to evaluate cell viability. Flow cytometry was performed to measure cell cycle. WB was performed to detect the expressions of Ki67, cyclin D1, and cyclin dependent kinase 4 (CDK4). Results: Among HeLa, C-33A, and CaSki cells, the highest expression of CCAT2 was found in CaSki cells. CCAT2 overexpression and interference vectors were successfully transfected into the CaSki cells. Compared with the control group, the cells viability and proliferation in the sh-CCAT2 group was significantly decreased (all P<0.01), the proportion of cells in the G1 phase was significantly increased (P<0.01), and the expression levels of Ki67, cyclin D1, and CDK4 were significantly decreased (all P<0.01). However, in the overExp-CCAT2 group, the cell proliferation was enhanced and the expression levels of Ki67, cyclin D1, and CDK4 were significantly increased (all P<0.01). Conclusion: CCAT2 affects proliferation and cell cycle of cervical cancer cells by regulating the expressions of their associated proteins.