Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Añadir filtros








Intervalo de año
1.
Int. j. morphol ; 42(4): 1080-1095, ago. 2024. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1569275

RESUMEN

SUMMARY: Marein is a flavonoid compound that reduces blood glucose and lipids and has a protective effect in diabetes. However, the effect and mechanism(s) of marein on renal endothelial-mesenchymal transition in diabetic kidney disease (DKD) have not been elucidated. In this study, single-cell sequencing data on DKD were analyzed using a bioinformation method, and the data underwent reduced dimension clustering. It was found that endothelial cells could be divided into five subclusters. The developmental sequence of the subclusters was 0, 1, 4, 2, and 3, of which subcluster 3 had the most interstitial phenotype.The expression of mesenchymal marker protein:Vimentin(VIM), Fibronectin(FN1), and fibroblast growth factor receptor 1 (FGFR1) increased with the conversion of subclusters. In db/db mice aged 13-14 weeks, which develop DKD complications after 8-12 weeks of age, marein reduced blood levels of glucose, creatinine, and urea nitrogen, improved structural damage in kidney tissue, and reduced collagen deposition and the expression of FN1 and VIM. Marein also up-regulated autophagy marker:Light chain 3II/I(LC3II/I) and decreased FGFR1 expression in renal tissue. In an endothelial-mesenchymal transition model, a high glucose level induced a phenotypic change in human umbilical vein endothelial cells. Marein decreased endothelial cell migration, improved endothelial cell morphology, and decreased the expression of VIM and FN1. The use of the FGFR1 inhibitor, AZD4547, and autophagy inhibitor, 3-Methyladenine(3-MA), further demonstrated the inhibitory effect of marein on high glucose-induced endothelial-mesenchymal transition by reducing FGFR1 expression and up-regulating the autophagy marker protein, LC3II/I. In conclusion, this study suggests that marein has a protective effect on renal endothelial- mesenchymal transition in DKD, which may be mediated by inducing autophagy and down-regulating FGFR1 expression.


La mareína es un compuesto flavonoide que reduce la glucosa y los lípidos en sangre y tiene un efecto protector en la diabetes. Sin embargo, no se han dilucidado el efecto y los mecanismos de la mareína sobre la transición endotelial- mesenquimatosa renal en la enfermedad renal diabética (ERD). En este estudio, los datos de secuenciación unicelular sobre DKD se analizaron utilizando un método de bioinformación y los datos se sometieron a una agrupación de dimensiones reducidas. Se descubrió que las células endoteliales podían dividirse en cinco subgrupos. La secuencia de desarrollo de los subgrupos fue 0, 1, 4, 2 y 3, de los cuales el subgrupo 3 tenía el fenotipo más intersticial. La expresión de la proteína marcadora mesenquimatosa: vimentina (VIM), fibronectina (FN1) y receptor del factor de crecimiento de fibroblastos. 1 (FGFR1) aumentó con la conversión de subgrupos. En ratones db/db de 13 a 14 semanas de edad, que desarrollan complicaciones de DKD después de las 8 a 12 semanas de edad, la mareína redujo los niveles sanguíneos de glucosa, creatinina y nitrógeno ureico, mejoró el daño estructural en el tejido renal y redujo la deposición y expresión de colágeno de FN1 y VIM. Marein también aumentó el marcador de autofagia: Cadena ligera 3II/I (LC3II/I) y disminuyó la expresión de FGFR1 en el tejido renal. En un modelo de transición endotelial-mesenquimal, un nivel alto de glucosa indujo un cambio fenotípico en las células endoteliales de la vena umbilical humana. Marein disminuyó la migración de células endoteliales, mejoró la morfología de las células endoteliales y disminuyó la expresión de VIM y FN1. El uso del inhibidor de FGFR1, AZD4547, y del inhibidor de la autofagia, 3-metiladenina (3-MA), demostró aún más el efecto inhibidor de la mareína en la transición endotelial-mesenquimal inducida por niveles altos de glucosa al reducir la expresión de FGFR1 y regular positivamente la proteína marcadora de autofagia. , LC3II/I. En conclusión, este estudio sugiere que la mareína tiene un efecto protector sobre la transición endotelial-mesenquimatosa renal en la ERC, que puede estar mediada por la inducción de autofagia y la regulación negativa de la expresión de FGFR1.


Asunto(s)
Chalconas/farmacología , Nefropatías Diabéticas/tratamiento farmacológico , Transición Endotelial-Mesenquimatosa , Autofagia , Biología Computacional , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos
2.
China Pharmacy ; (12): 1044-1049, 2024.
Artículo en Chino | WPRIM | ID: wpr-1017135

RESUMEN

OBJECTIVE To explore the protective effect of marein against alcoholic fatty liver (AFL) and its potential mechanisms. METHODS AFL mice model was established with strong wine by gavage. The mice were randomly divided into normal control group (n=9, 0.5% sodium carboxymethyl cellulose solution), model group (n=10, 0.5% sodium carboxymethyl cellulose solution) and marein 75 and 150 mg/kg groups (n=9). Mice were given relevant medicine intragastrically, once a day, for consecutive 30 days. After the last medication, the levels of triglyceride (TG), malondialdehyde (MDA), and superoxide dismutase (SOD) in liver tissue were determined, and hepatic histopathological changes of liver tissue were observed; the protein expression levels of peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase-1 (CPT-1), and diacylglycerol acyltransferase (DGAT) were determined in liver tissue. BRL hepatocytes injury model was induced by ethanol combined with ferrous sulfate and oleic acid; after treatment with 3, 6 and 12 μmol/L of marein for 24 h, the distribution of lipid droplets, the levels of TG, MDA and SOD and protein expressions of PPARα, CPT-1 and DGAT in hepatocytes were examined. After pretreatment with MK886 (PPARα inhibitor, 10 μmol/L),modeled hepatocytes were treated with 12 μmol/L of marein for 24 h, and the protein expressions of PPARα, CPT-1 and DGAT were determined. RESULTS As the results showed in vivo, compared with the model group, after treatment with 75 and 150 mg/kg of marein, the degree of steatosis was significantly reduced, and the levels of TG and MDA and protein expression of DGAT were significantly decreased(P<0.05 or P<0.01); the levels of SOD, protein expressions of PPARα and CPT-1 were significantly increased(P<0.05 or P<0.01). As the results showed in vitro, after treatment with 3, 6 and 12 μmol/L of marein, the lipid accumulation of hepatocytes was significantly inhibited, and the levels of TG and MDA, protein expression of DGAT were significantly decreased(P<0.05 or P<0.01), while the levels of SOD, protein expressions of PPARα and CPT-1 were significantly increased(P<0.05 or P<0.01). After MK886 pretreatment, the effects of marein on the above protein expressions were abolished. CONCLUSIONS Marein might exert a protective effect against AFL. The mechanisms might be related to inhibiting oxidative stress-mediated injury and improving PPARα-mediated lipid metabolism signaling pathway.

3.
Basic & Clinical Medicine ; (12): 51-56, 2024.
Artículo en Chino | WPRIM | ID: wpr-1018571

RESUMEN

Objective To study the effect of marein on myocardial fibrosis in diabetic mice.Methods Ten lep-tin receptor gene defective heterozygous(db/m)mice aged 5-6 weeks were selected as the control group and 30 diabetic mice with leptin receptor gene defective db/db were divided into:db/db group(db/db,n=10),metformin(Met)positive group(280 mg/kg daily,n=10)and marein drug intervention group(50 mg/kg,n=10).After continuous administration for 8 weeks,the cardiac morphological changes were observed by HE staining and Masson staining.The distribution and expression of vimentin were detected by immunohistochemis-try method.The expression of fibronectin,vimentin,and transforming growth factor-β1(TGF-β1)protein in cardiac tissue was detected by Western blot.Results Myocardial fiber hypertrophy was observed in db/db group,and myocardial structural damage was improved in metformin group and marein group.Compared with db/m group,the expression of myocardial collagen fiber in db/db group increased(P<0.01),while the expression of myo-cardial collagen fiber in metformin group and marein group decreased(P<0.01).Compared with the control group,the expression of vimentin in myocardial tissue of db/db group was significantly increased(P<0.01),while the expression of vimentin in metformin group and marein group was significantly decreased(P<0.01).The expression of fibronectin,vimentin and TGF-β1 in db/db group was significantly increased as compared with those in db/m group(P<0.01),while the expression of fibronectin,vimentin and TGF-β1 in metformin group and marein group were significantly decreased(P<0.01).Conclusions Marein improves myocardial fibrosis in diabetic db/db mice.

4.
Int. j. morphol ; 40(5): 1152-1164, 2022. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1405284

RESUMEN

SUMMARY: Coreopsis tinctoria Nutt. (C. tinctoria Nutt.) can protect diabetic kidneys, but the mechanisms are unclear. This work is to investigate the potential mechanisms of C. tinctoria Nutt. in the treatment of diabetic nephropathy based on network pharmacology analysis of its active ingredients. Twelve small molecular compounds of C. tinctoria Nutt. and targets related to diabetic nephropathy were docked by Discovery Studio 3.0. DAVID database was used for GO enrichment and KEGG pathway analysis. Cytoscape 3.6.1 was used to construct active ingredient-target network. Cell viability was detected with MTT. Glucose consumption was analyzed with glucose oxidase method. Protein expression was measured with Western blot and immunofluorescence. Electron microscopy observed autophagosomes. The core active ingredients of C. tinctoria Nutt. included heriguard, flavanomarein, maritimein, and marein. Twenty-one core targets of the 43 potential targets were PYGM, TLR2, RAF1, PRKAA2, GPR119, INS, CSF2, TNF, IAPP, AKR1B1, GSK3B, SYK, NFKB2, ESR2, CDK2, FGFR1, HTRA1, AMY2A, CAMK4, GCK, and ABL2. These 21 core targets were significantly enriched in 50 signaling pathways. Thirty- four signaling pathways were closely related to diabetic nephropathy, of which the top pathways were PI3K/AKT, insulin, and mTOR, and insulin resistance. The enriched GO terms included biological processes of protein phosphorylation, and the positive regulation of PI3K signaling and cytokine secretion; cellular components of cytosol, extracellular region, and extracellular space; and molecular function of protein kinase activity, ATP binding, and non-membrane spanning protein tyrosine kinase activity. In vitro experiments found that marein increased the expression of phosphorylated AKT/AKT in human renal glomerular endothelial cells of an insulin resistance model induced by high glucose, as well as increased and decreased, respectively, the levels of the microtubule-associated proteins, LC3 and P62. C. tinctoria Nutt. has many active ingredients, with main ingredients of heriguard, flavanomarein, maritimein, and marein, and may exert anti-diabetic nephropathy effect through various signaling pathways and targets.


RESUMEN: Coreopsis tinctoria Nutt. (C. tinctoria Nutt.) puede proteger riñones diabéticos, sin embargo los mecanismos son desconocidos. Este trabajo se realizó para investigar los potenciales mecanismos de C. tinctoria Nutt. en el tratamiento de la nefropatía diabética basado en el análisis de farmacología en red de sus principios activos. Doce compuestos moleculares pequeños de C. tinctoria Nutt. y los objetivos relacionados con la nefropatía diabética fueron acoplados por Discovery Studio 3.0. La base de datos DAVID se utilizó para el enriquecimiento GO y el análisis de la vía KEGG. Se usó Cytoscape 3.6.1 para construir una red de ingrediente-objetivo activa. La viabili- dad celular se detectó mediante MTT. El consumo de glucosa se analizó con el método de glucosa oxidasa. La expresión proteica fue determinada mediante Western blot e inmunofluorescencia. En la microscopía electrónica se observó autofagosomas. Los principales ingredientes activos de C. tinctoria Nutt. incluyeron heriguard, flavanomarein, maritimin y marein. Veintiún de los 43 objetivos potenciales fueron PYGM, TLR2, RAF1, PRKAA2, GPR119, INS, CSF2, TNF, IAPP, AKR1B1, GSK3B, SYK, NFKB2, ESR2, CDK2, FGFR1, HTRA1, AMY2A, CAMK4, GCK y ABL2. Estos 21 objetivos principales se enriquecieron significativamente en 50 vías de señalización. Treinta y cuatro vías de señalización estuvieron estrechamente relacionadas con la nefropatía diabética, de las cuales las principales vías fueron PI3K/ AKT, insulina y mTOR, y resistencia a la insulina. Los términos GO enriquecidos incluyeron procesos biológicos de fosforilación proteica, la regulación positiva de la señalización de PI3K y la secreción de citoquinas; componentes celulares del citosol, región extracelular y espacio extracelular; y la función molecular de la actividad de la proteína quinasa, la unión de ATP y la actividad de la proteína tirosina quinasa que no se extiende por la membrana. Los experimentos in vitro encontraron que la mareína aumentaba la expresión de AKT/AKT fosforilada en células endoteliales glomerulares renales humanas en un modelo de resistencia a la insulina inducida por niveles elevados de glucosa, así como aumentaron y disminuyeron respectivamente, los niveles de las proteínas asociadas a los microtúbulos, LC3 y P62. C. tinctoria Nutt. tiene muchos principios activos, con ingredientes principales de heriguard, flavanomarein, maritimain y marein, y puede ejercer un efecto de nefropatía antidiabética a través de distintass vías de señalización y objetivos.


Asunto(s)
Coreopsis/química , Nefropatías Diabéticas , Farmacología en Red , Microscopía Electrónica , Western Blotting , Técnica del Anticuerpo Fluorescente , Chalconas
5.
Int. j. morphol ; 39(6): 1635-1645, dic. 2021.
Artículo en Inglés | LILACS | ID: biblio-1385530

RESUMEN

SUMMARY: Marein is the main active substance of Coreopsis tinctoria nutt. It not only has anti-oxidation and anti-tumor effects, but also can lower blood lipid, prevent high blood glucose, improve insulin resistance, inhibit gluconeogenesis and promote glycogen synthesis. However, the exact mechanism of its action is still unclear. Here, we explored the effect and mechanism of Marein on insulin resistance. The mice were divided into db/m, db/db, metformin+db/db, and marein+db/db groups. The body weight and kidney weight were recorded. Serum biochemical and renal function tests were measured after 8 weeks of continuous administration. Kidney tissues were subjected to HE staining, PAS staining, and Masson staining. The effect of marein on PI3K/Akt signal and autophagy pathway was detected by Western blot. After 8 weeks of Marein intervention, the body weight and kidney weight of mice did not change significantly, but the fasting blood glucose and blood lipid levels were significantly reduced than db/db group. Marein significantly improved the insulin resistance index, increased serum adiponectin and improved glucose and lipid metabolism disorders of db/db mice. Moreover, marein improved the basement membrane thickness of glomeruli and tubules, improved glomerular sclerosis and tubular fibrosis, as well as renal insufficiency, thereby protecting kidney function and delaying the pathological damage. Furthermore, marein increased the expression of PI3K and the phosphorylation of Akt/Akt (Ser473), and promoted the expression of LC3II/I, Beclin1 and ATG5. Additionally, it promoted the expression of FGFR1 in the kidney of db/db mice, and promoted the increase of serum FGF21 and FGF23. Marein has a protective effect on the kidneys of diabetic mice. It protects diabetic nephropathy by regulating the IRS1/PI3K/Akt signaling pathway to improve insulin resistance. Therefore, marein may be an insulin sensitizer.


RESUMEN: Marein es la principal sustancia activa de Coreopsis tinctoria nutt. No solo tiene efectos antioxidantes y antitumorales, sino que también puede reducir los lípidos en sangre, prevenir la glucemia alta, mejorar la resistencia a la insulina, inhibir la gluconeogénesis y promover la síntesis de glucógeno. Sin embargo, el mecanismo exacto de su acción aún no está claro. Se analizó el efecto y el mecanismo de Marein sobre la resistencia a la insulina. Los ratones se dividieron en grupos db / m, db / db, metformina + db / db y mareína + db / db. Se registró el peso corporal y el peso de los riñones. Se midieron las pruebas de función renal y bioquímica sérica después de 8 semanas de administración continua. Los tejidos renales se sometieron a tinción HE, tinción PAS y tinción Masson. El efecto de la mareína sobre la señal de PI3K / Akt y la vía de autofagia se detectó mediante Western blot. Al término de 8 semanas de tratamiento con mareína, el peso corporal y el peso de los riñones de los ratones no cambiaron significativamente, pero los niveles de glucosa en sangre y lípidos en sangre en ayunas se redujeron significativamente en relación a los del grupo db / db. Marein mejoró significativamente el índice de resistencia a la insulina, aumentó la adiponectina sérica y mejoró los trastornos del metabolismo de la glucosa y los lípidos de los ratones db / db. Además, la mareína mejoró el grosor de la membrana basal de los glomérulos y túbulos, mejoró la esclerosis glomerular y la fibrosis tubular, así como la insuficiencia renal, protegiendo la función renal y retrasando el daño patológico. Además, la mareína aumentó la expresión de PI3K y la fosforilación de Akt / Akt (Ser473), y promovió la expresión de LC3II / I, Beclin1 y ATG5. Además, promovió la expresión de FGFR1 en el riñón de ratones db / db y el aumento de FGF21 y FGF23 en suero. Marein tiene un efecto protector sobre los riñones de ratones diabéticos. Protege la nefropatía diabética regulando la vía de señalización IRS1 / PI3K / Akt para mejorar la resistencia a la insulina. Por tanto, la mareína puede ser un sensibilizador a la insulina.


Asunto(s)
Animales , Ratones , Resistencia a la Insulina , Chalconas/administración & dosificación , Nefropatías Diabéticas , Autofagia/efectos de los fármacos , Glucemia , Peso Corporal/efectos de los fármacos , Inmunohistoquímica , Western Blotting , Lípidos/sangre
6.
Chinese Pharmacological Bulletin ; (12): 1133-1137, 2019.
Artículo en Chino | WPRIM | ID: wpr-857182

RESUMEN

Aim To study the role of marein mediated AMPK signaling pathway in delaying oxidative stress, inflammation and fibrotic protein expression in diabetic nephropathy ( DN ). Methods In vitro diabetic nephropathy model was established by HG + PA induced rat mesangial cells ( HBZY-1 ) , and the cultured HBZY-1 cells were divided into normal control group (NG), HG + PA( GlucoselOO mmol • L'1 + Palmitic acid 250 [imo\ • L'1, HG +PA) model group, HG + PA + marein with different doses of 25 p,mol • L"1, 50 p,mol • L"1, 100 jimol • L"1, and 200 junol • L"1 groups. MTS was used to detect the effect of marein on HBZY-1 cell proliferation, and the optimal concentration was selected. Western blot was used to test the protein expression of NOX4, TGF-fU, MCP-1, a-SMA, FN, Collagen VI. Adenosine monophosphate activated( AMPK) protein kinase family of AMPK7I, p-AMPK a expression were measured. Results Marein inhibited high glucose palmitate-induced proliferation of HBZY-1 cells, down-regulated NOX4, TGF-(31, MCP-1, cx-SMA, FN and Collagen VI expression in model cells. Meanwhile, marein up-regulated both AMPK 7I and p-AMPKa expression. Conclusions Marein may inhibit the HBZY-1 cell proliferation, oxidative stress, inflammation and fibrosis factors expression in HG + PA induced HBZY-1 cell by activating of both AMPK 7I and AMPK signaling pathway, thus delaying renal injury in diabetic nephropathy.

7.
Chinese Herbal Medicines ; (4): 157-168, 2018.
Artículo en Chino | WPRIM | ID: wpr-842133

RESUMEN

Objective: To investigate the effects of the ethyl acetate extract of Coreopsis tinctoria (EAEC) on insulin resistance (IR) in rats fed a high-fat diet. Methods: Male Sprague-Dawley (SD) rats were fed a HFD (60% fat) supplemented with EAEC for 8 weeks. The administration of EAEC to the rats with HFD-induced insulin resistance reduced hyperglycemia, plasma levels of insulin, and steatosis in the liver. Metabolomic study was used to analyze the metabolic levels of the high glucose-treated cells, control cells and marein-treated cells. Results: High glucose and high fat conditions caused a significant increase in blood glucose, insulin, serum TC, TG and LDL-C levels, leading to abnormal IR in rats. However, treatment with EAEC protects against HFD-induced IR by improving the fasting serum glucose homeostasis and lipid homeostasis. The high glucose conditions significantly decreased glycogen synthesis and increased PEPCK, G6Pase and Krebs cycle-related enzyme protein levels, leading to an abnormal metabolic state in HepG2 cells. However, treatment with marein improved IR by increasing glucose uptake and glycogen synthesis and by downregulating PEPCK and G6Pase protein levels. The statistical analysis of the HPLC/MS data demonstrated that marein could restore the normal metabolic state. Conclusion: The results revealed that EAEC ameliorates IR in rats, and marein has the potential to improve IR by ameliorating glucose metabolism disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA