Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biotechnology ; (12): 4403-4419, 2022.
Artículo en Chino | WPRIM | ID: wpr-970323

RESUMEN

1, 5-diaminopentane, also known as cadaverine, is an important raw material for the production of biopolyamide. It can be polymerized with dicarboxylic acid to produce biopolyamide PA5X whose performances are comparable to that of the petroleum-based polyamide materials. Notably, biopolyamide uses renewable resources such as starch, cellulose and vegetable oil as substrate. The production process does not cause pollution to the environment, which is in line with the green and sustainable development strategy. The biosynthesis of 1, 5-diaminopentane mainly includes two methods: the de novo microbial synthesis and the whole cell catalysis. Lysine decarboxylase as the key enzyme for 1, 5-diaminopentane production, mainly includes an inducible lysine decarboxylase CadA and a constituent lysine decarboxylase LdcC. Lysine decarboxylase is a folded type Ⅰ pyridoxal-5' phosphate (PLP) dependent enzyme, which displays low activity and unstable structure, and is susceptible to deactivation by environmental factors in practical applications. Therefore, improving the catalytic activity and stability of lysine decarboxylase has become a research focus in this field, and molecular engineering and immobilization are the mainly approaches. Here, the mechanism, molecular engineering and immobilization strategies of lysine decarboxylase were reviewed, and the further strategies for improving its activity and stability were also prospected, with the aim to achieve efficient production of 1, 5-diaminopentane.


Asunto(s)
Escherichia coli/metabolismo , Carboxiliasas/metabolismo , Catálisis , Cadaverina/metabolismo
2.
Chinese Journal of Biotechnology ; (12): 4215-4230, 2021.
Artículo en Chino | WPRIM | ID: wpr-921500

RESUMEN

Threonine aldolases catalyze the aldol condensation of aldehydes with glycine to furnish β-hydroxy-α-amino acid with two stereogenic centers in a single reaction. This is one of the most promising green methods for the synthesis of optically pure β-hydroxy-α-amino acid with high atomic economy and less negative environmental impact. Several threonine aldolases from different origins have been identified and characterized. The insufficient -carbon stereoselectivity and the challenges of balancing kinetic versus thermodynamic control to achieve the optimal optical purity and yield hampered the application of threonine aldolases. This review summarizes the recent advances in discovery, catalytic mechanism, high-throughput screening, molecular engineering and applications of threonine aldolases, with the aim to provide some insights for further research in this field.


Asunto(s)
Aminoácidos , Catálisis , Glicina , Glicina Hidroximetiltransferasa/metabolismo , Cinética , Especificidad por Sustrato , Treonina
3.
Acta Pharmaceutica Sinica B ; (6): 2212-2226, 2020.
Artículo en Inglés | WPRIM | ID: wpr-881107

RESUMEN

Conjugation of antibodies to nanoparticles allows specific cancer targeting, but conventional conjugation methods generate heterogeneous conjugations that cannot guarantee the optimal orientation and functionality of the conjugated antibody. Here, a molecular engineering technique was used for site-specific conjugation of antibodies to nanoparticles. We designed an anti-claudin 3 (CLDN3) antibody containing a single cysteine residue, h4G3cys, then linked it to the maleimide group of lipid polydopamine hybrid nanoparticles (LPNs). Because of their negatively charged lipid coating, LPNs showed high colloidal stability and provided a functional surface for site-specific conjugation of h4G3cys. The activity of h4G3cys was tested by measuring the binding of h4G3cys-conjugated LPNs (C-LPNs) to CLDN3-positive tumor cells and assessing its subsequent photothermal effects. C-LPNsspecifically recognized CLDN3-overexpressing T47D breast cancer cells but not CLDN3-negative Hs578T breast cancer cells. High binding of C-LPNs to CLDN3-overexpressing T47D cells resulted in significantly higher temperature generation upon NIR irradiation and potent anticancer photothermal efficacy. Consistent with this, intravenous injection of C-LPNsin a T47D xenograft mouse model followed by NIR irradiation caused remarkable tumor ablation compared with other treatments through high temperature increases. Our results establish an accurate antibody-linking method and demonstrate the possibility of developing therapeutics using antibody-guided nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA