Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 16-23, 2023.
Artículo en Chino | WPRIM | ID: wpr-960903

RESUMEN

ObjectiveTo explore the underlying mechanism of Tripterygium wilfordii polyglycoside tablets (TWPT) in the prevention and treatment of kidney injury in diabetic nephropathy (DN) through the nuclear factor of activated T-cells 2(NFAT2)/cyclooxygenase-2(COX-2) pathway. MethodForty-two male SD rats of SPF grade were selected and randomly divided into a normal group (n=8) and an experimental group (n=34) after one week of adaptive feeding. The rats in the normal group were fed conventionally. The DN model was established in rats of the experimental group by intraperitoneal injection of streptozotocin (STZ) following one week of feeding on a high-fat and high-glucose diet. After the death and failure cases during modeling were eliminated, the remaining 24 model rats were randomly divided into model group, valsartan (8.33 mg·kg-1·d-1) group, and TWPT (5 mg·kg-1·d-1) group. Rats in normal group and model group were given equal amounts of normal saline by gavage. After six weeks, body weight was measured and urine samples were collected. Blood samples were collected from the abdominal aorta, and then the rats were sacrificed for sampling. Biochemical indicators, such as serum blood urea nitrogen (BUN), serum creatinine (SCr), alanine aminotransferase (ALT), blood lipid, blood glucose, and 24-hour urine total protein (24 h UTP), were determined. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathology of the kidney. Enzyme-linked immunosorbent assay (ELISA) was used to detect NFAT2 and COX-2 expression levels in the serum. Western blot and Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR)were adopted to detect NFAT2, COX-2 protein and mRNA expression in kidney tissues, respectively. ResultCompared with the normal group, the model group showed elevated 24 h UTP, BUN, SCr, CHO, TG, and FBG, increased serum NFAT2 and COX-2 production and expression (P<0.01), and elevated protein and mRNA expression of NFAT2 and COX-2 in kidney tissues (P<0.01). In addition, the pathology of the kidney showed enlarged glomeruli, mild proliferation of mesangial cells, and widened mesangial stroma. Compared with the model group, the TWPT group showed decreased 24 h UTP, BUN, SCr, CHO, TG, and FBG (P<0.05,P<0.01), basically normal glomerular morphology, decreased expression of serum NFAT2 and COX-2 (P<0.01), and down-regulated protein and mRNA expression of NFAT2 and COX-2 in kidney tissues (P<0.01). ConclusionTWPT can alleviate 24 h UTP in DN model rats, protect renal function, and improve renal pathology, and its mechanism of action may be related to the down-regulation of NFAT2/COX-2 expression in the serum and kidney tissues.

2.
Journal of Southern Medical University ; (12): 1270-1276, 2018.
Artículo en Chino | WPRIM | ID: wpr-691183

RESUMEN

<p><b>OBJECTIVE</b>To determine whether hyperglycemia activates NFAT2 in cultured podocytes to cause podocyte apoptosis and explore the role of NFAT2 in high glucose-induced podocyte apoptosis.</p><p><b>METHODS</b>Immortalized mouse podocytes were cultured in the presence of normal (5.3 mmol/L) or high glucose (10, 20, 30, and 40 mmol/L) or pretreated with 11R-vivit (100 nmol/L) or cyclosporine A (500 nmol/L) before exposure to 20 mmol/L glucose for different durations (0.5-48 h). The activation of NFAT2 in the podocytes was detected using Western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was explored by observing the inhibition of NFAT2 activation by 11R-vivit using flow cytometry. Intracellular Ca was monitored in high glucose-treated podocytes using Fluo-3/AM. The mRNA and protein expressions of the apoptosis gene Bax were detected using real time-qPCR and Western blotting.</p><p><b>RESULTS</b>Exposure to high glucose in the medium time- and dose-dependently activated NFAT2 in cultured podocytes. Pretreatment with cyclosporine A or 11R- VIVIT completely blocked nuclear accumulation of NFAT2. Treatment with 11R- vivit also inhibited high glucoseinduced apoptosis in cultured podocytes. Exposure to high glucose obviously increased [Ca]I in the podocytes to cause activation of calcineurin and the subsequent increment of nuclear accumulation of NFAT2 and Bax expression.</p><p><b>CONCLUSIONS</b>High glucose-induced apoptosis in podocytes is mediated by calcineurin/NFAT2/Bax signaling pathway, which may serve as a potential target for therapeutic intervention.</p>

3.
Experimental & Molecular Medicine ; : 432-439, 2012.
Artículo en Inglés | WPRIM | ID: wpr-119838

RESUMEN

Platinum nanoparticles (PtNP) exhibit remarkable antioxidant activity. There is growing evidence concerning a positive relationship between oxidative stress and bone loss, suggesting that PtNP could protect against bone loss by modulating oxidative stress. Intragastric administration of PtNP reduced ovariectomy (OVX)-induced bone loss with a decreased level of activity and number of osteoclast (OC) in vivo. PtNP inhibited OC formation by impairing the receptor activator of nuclear factor-kappaB ligand (RANKL) signaling. This impairment was due to a decreased activation of nuclear factor-kappaB and a reduced level of nuclear factor in activated T-cells, cytoplasmic 1 (NFAT2). PtNP lowered RANKL-induced long lasting reactive oxygen species as well as intracellular concentrations of Ca2+ oscillation. Our data clearly highlight the potential of PtNP for the amelioration of bone loss after estrogen deficiency by attenuated OC formation.


Asunto(s)
Animales , Ratones , Nanopartículas del Metal/administración & dosificación , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Osteoclastos/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Ovariectomía/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Platino (Metal)/administración & dosificación , Ligando RANK/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
4.
Anatomy & Cell Biology ; : 303-309, 2010.
Artículo en Inglés | WPRIM | ID: wpr-93240

RESUMEN

Nuclear factor of activated T-cells (NFAT) proteins are, calcium-regulated transcription factors, key regulator of stimulation-dependent gene activation. In our microarray analysis for the genes expressed in human black and white hairs, NFAT2 was significantly upregulated in the white hair, compared to the black hair. The aim of this study was to investigate functional role of NFAT2 in melanogenesis. Western blot analysis was performed to investigate the expression of NFAT2 protein in B16 melanoma cells. Our data showed that NFAT2 expression was increased in the hypopigmented B16 cells, while tyrosinase and MITF expression was decreased. To investigate the potential role of NFAT2, the recombinant adenovirus expressing microRNA specific for NFAT2 was transduced into the cultured B16 melanoma cells. Consistently, inhibition of NFAT2 enhanced tyrosinase activity and melanin content. Moreover, cyclosporine A, which is known as a calcineurin inhibitor blocking NFAT activation, enhanced tyrosinase activity and melanin content. These data suggest that NFAT2 may play an important role in regulation of melanogenesis in melanocyte.


Asunto(s)
Humanos , Adenoviridae , Western Blotting , Calcineurina , Ciclosporina , Regulación hacia Abajo , Población Blanca , Cabello , Hidroquinonas , Melaninas , Melanocitos , Melanoma Experimental , Análisis por Micromatrices , MicroARNs , Monofenol Monooxigenasa , Factores de Transcripción NFATC , Proteínas , Linfocitos T , Factores de Transcripción , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA