Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Acta Pharmaceutica Sinica B ; (6): 1711-1725, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982801

RESUMEN

Circulating tumor clusters (CTC) disseminating from the primary tumor are responsible for secondary tumor formation where the conventional treatments such as chemotherapy and radiotherapy does not prevent the metastasis at locally advanced stage of breast cancer. In this study, a smart nanotheranostic system has been developed to track and eliminate the CTCs before it can colonize at a new site, which would reduce metastatic progression and increase the five-year survival rate of the breast cancer patients. Targeted multiresponsive (magnetic hyperthermia and pH) nanomicelles incorporated with NIR fluorescent superparamagnetic iron oxide nanoparticles were developed based on self-assembly for dual modal imaging and dual toxicity for spontaneous killing of CTCs in blood stream. A heterogenous tumor clusters model was developed to mimic the CTCs isolated from breast cancer patients. The nanotheranostic system was further evaluated for the targeting property, drug release kinetics, hyperthermia and cytotoxicity against developed CTC model in vitro. In vivo model in BALB/c mice equivalent to stage III and IV human metastatic breast cancer was developed to evaluate the biodistribution and therapeutic efficacy of micellar nanotheranostic system. Reduced CTCs in blood stream and low distant organ metastasis after treatment with the nanotheranostic system demonstrates its potential to capture and kill the CTCs that minimize the secondary tumor formation at distant sites.

2.
Acta Pharmaceutica Sinica B ; (6): 406-423, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929303

RESUMEN

Incorporation of multiple functions into one nanoplatform can improve cancer diagnostic efficacy and enhance anti-cancer outcomes. Here, we constructed doxorubicin (DOX)-loaded silk fibroin-based nanoparticles (NPs) with surface functionalization by photosensitizer (N770). The obtained nanotheranostics (N770-DOX@NPs) had desirable particle size (157 nm) and negative surface charge (-25 mV). These NPs presented excellent oxygen-generating capacity and responded to a quadruple of stimuli (acidic solution, reactive oxygen species, glutathione, and hyperthermia). Surface functionalization of DOX@NPs with N770 could endow them with active internalization by cancerous cell lines, but not by normal cells. Furthermore, the intracellular NPs were found to be preferentially retained in mitochondria, which were also efficient for near-infrared (NIR) fluorescence imaging, photothermal imaging, and photoacoustic imaging. Meanwhile, DOX could spontaneously accumulate in the nucleus. Importantly, a mouse test group treated with N770-DOX@NPs plus NIR irradiation achieved the best tumor retardation effect among all treatment groups based on tumor-bearing mouse models and a patient-derived xenograft model, demonstrating the unprecedented therapeutic effects of trimodal imaging-guided mitochondrial phototherapy (photothermal therapy and photodynamic therapy) and chemotherapy. Therefore, the present study brings new insight into the exploitation of an easy-to-use, versatile, and robust nanoplatform for programmable targeting, imaging, and applying synergistic therapy to tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA