Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Biomedical Engineering ; (6): 1142-1151, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008944

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment, with the predominant clinical diagnosis of spatial working memory (SWM) deficiency, which seriously affects the physical and mental health of patients. However, the current pharmacological therapies have unsatisfactory cure rates and other problems, so non-pharmacological physical therapies have gradually received widespread attention. Recently, a novel treatment using 40 Hz light flicker stimulation (40 Hz-LFS) to rescue the cognitive function of model animals with AD has made initial progress, but the neurophysiological mechanism remains unclear. Therefore, this paper will explore the potential neural mechanisms underlying the modulation of SWM by 40 Hz-LFS based on cross-frequency coupling (CFC). Ten adult Wistar rats were first subjected to acute LFS at frequencies of 20, 40, and 60 Hz. The entrainment effect of LFS with different frequency on neural oscillations in the hippocampus (HPC) and medial prefrontal cortex (mPFC) was analyzed. The results showed that acute 40 Hz-LFS was able to develop strong entrainment and significantly modulate the oscillation power of the low-frequency gamma (lγ) rhythms. The rats were then randomly divided into experimental and control groups of 5 rats each for a long-term 40 Hz-LFS (7 d). Their SWM function was assessed by a T-maze task, and the CFC changes in the HPC-mPFC circuit were analyzed by phase-amplitude coupling (PAC). The results showed that the behavioral performance of the experimental group was improved and the PAC of θ-lγ rhythm was enhanced, and the difference was statistically significant. The results of this paper suggested that the long-term 40 Hz-LFS effectively improved SWM function in rats, which may be attributed to its enhanced communication of different rhythmic oscillations in the relevant neural circuits. It is expected that the study in this paper will build a foundation for further research on the mechanism of 40 Hz-LFS to improve cognitive function and promote its clinical application in the future.


Asunto(s)
Humanos , Adulto , Ratas , Animales , Memoria a Corto Plazo/fisiología , Ratas Wistar , Enfermedades Neurodegenerativas , Hipocampo , Corteza Prefrontal
2.
Neuroscience Bulletin ; (6): 275-289, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929084

RESUMEN

How to quickly predict an individual's behavioral choices is an important issue in the field of human behavior research. Using noninvasive electroencephalography, we aimed to identify neural markers in the prior outcome-evaluation stage and the current option-assessment stage of the chicken game that predict an individual's behavioral choices in the subsequent decision-output stage. Hierarchical linear modeling-based brain-behavior association analyses revealed that midfrontal theta oscillation in the prior outcome-evaluation stage positively predicted subsequent aggressive choices; also, beta oscillation in the current option-assessment stage positively predicted subsequent cooperative choices. These findings provide electrophysiological evidence for the three-stage theory of decision-making and strengthen the feasibility of predicting an individual's behavioral choices using neural oscillations.


Asunto(s)
Agresión/fisiología , Encéfalo , Electroencefalografía , Relaciones Interpersonales
3.
Journal of Biomedical Engineering ; (6): 320-324, 2019.
Artículo en Chino | WPRIM | ID: wpr-774204

RESUMEN

Selective attention promotes the perception of brain to outside world and coordinates the allocation of limited brain resources. It is a cognitive process which relies on the neural activities of attention-related brain network. As one of the important forms of brain activities, neural oscillations are closely related to selective attention. In recent years, the relationship between selective attention and neural oscillations has become a hot issue. The new method that using external rhythmic stimuli to influence neural oscillations, i.e., neural entrainment, provides a promising approach to investigate the relationship between selective attention and neural oscillations. Moreover, it provides a new method to diagnose and even to treat the attention dysfunction. This paper reviewed the research status on the relationship between selective attention and neural oscillations, and focused on the application prospects of neural entrainment in revealing this relationship and diagnosing, even treating the attention dysfunction.


Asunto(s)
Humanos , Atención , Encéfalo , Fisiología , Neuronas , Fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA