Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
The Korean Journal of Physiology and Pharmacology ; : 413-422, 2012.
Artículo en Inglés | WPRIM | ID: wpr-728187

RESUMEN

The purpose of this study is to investigated the mechanism of pharmacological action of local anesthetic and provide the basic information about the development of new effective local anesthetics. Fluorescent probe techniques were used to evaluate the effect of lidocaine.HCl on the physical properties (transbilayer asymmetric lateral and rotational mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Lidocaine.HCl increased the bulk lateral and rotational mobility of neuronal and model membrane lipid bilayes, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. Lidocaine.HCl increased annular lipid fluidity in SPMV lipid bilayers. It also caused membrane proteins to cluster. The most important finding of this study is that there is far greater increase in annular lipid fluidity than that in lateral and rotational mobilities by lidocaine.HCl. Lidocaine.HCl alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that lidocaine, in addition to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membrane lipid.


Asunto(s)
Anestésicos Locales , Membrana Celular , Corteza Cerebral , Difenilhexatrieno , Transferencia de Energía , Lidocaína , Membrana Dobles de Lípidos , Liposomas , Lípidos de la Membrana , Proteínas de la Membrana , Membranas , Neuronas , Fosfolípidos , Proteínas , Triptófano
2.
International Journal of Oral Biology ; : 159-167, 2010.
Artículo en Inglés | WPRIM | ID: wpr-92236

RESUMEN

To provide a basis for studying the pharmacological actions of tetracaine.HCl, we analyzed the membrane activities of this local anesthetic. The n-(9-anthroyloxy) stearic and palmitic acid (n-AS) probes (n = 2, 6, 9, 12 and 16) have been used previously to examine fluorescence polarization gradients. These probes can report the environment at a graded series of depths from the surface to the center of the membrane bilayer structure. In a dose-dependent manner, tetracaine.HCl decreased the anisotropies of 6-AS, 9-AS, 12-AS and 16-AP in the hydrocarbon interior of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex (SPMV), and liposomes derived from total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. However, this compound increased the anisotropy of 2-AS at the membrane interface. The magnitude of the membrane rotational mobility reflects the carbon atom numbers of the phospholipids comprising SPMV, SPMVTL and SPMVPL and was in the order of the 16, 12, 9, 6, and 2 positions of the aliphatic chains. The sensitivity of the effects of tetracaine.HCl on the rotational mobility of the hydrocarbon interior or surface region was dependent on the carbon atom numbers in the descending order 16-AP, 12-AS, 9-AS, 6-AS and 2-AS and on whether neuronal or model membranes were involved in the descending order SPMV, SPMVPL and SPMVTL.


Asunto(s)
Anisotropía , Carbono , Membrana Celular , Corteza Cerebral , Polarización de Fluorescencia , Liposomas , Membranas , Neuronas , Ácido Palmítico , Ácidos Palmíticos , Fosfolípidos , Ácidos Esteáricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA