Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Añadir filtros








Intervalo de año
1.
China Journal of Chinese Materia Medica ; (24): 3046-3054, 2023.
Artículo en Chino | WPRIM | ID: wpr-981435

RESUMEN

The aim of this study is to explore the mechanism of ligustilide, the main active constituent of essential oils of traditional Chinese medicine Angelicae Sinensis Radix, on alleviating oxygen-glucose deprivation/reperfusion(OGD/R) injury in PC12 cells from the perspective of ferroptosis. OGD/R was induced in vitro, and 12 h after ligustilide addition during reperfusion, cell viability was detected by cell counting kit-8(CCK-8) assay. DCFH-DA staining was used to detect the level of intracellular reactive oxygen species(ROS). Western blot was employed to detect the expression of ferroptosis-related proteins, glutathione peroxidase 4(GPX4), transferrin receptor 1(TFR1), and solute carrier family 7 member 11(SLC7A11), and ferritinophagy-related proteins, nuclear receptor coactivator 4(NCOA4), ferritin heavy chain 1(FTH1), and microtubule-associated protein 1 light chain 3(LC3). The fluorescence intensity of LC3 protein was analyzed by immunofluorescence staining. The content of glutathione(GSH), malondialdehyde(MDA), and Fe was detected by chemiluminescent immunoassay. The effect of ligustilide on ferroptosis was observed by overexpression of NCOA4 gene. The results showed that ligustilide increased the viability of PC12 cells damaged by OGD/R, inhibited the release of ROS, reduced the content of Fe and MDA and the expression of TFR1, NCOA4, and LC3, and improved the content of GSH and the expression of GPX4, SLC7A11, and FTH1 compared with OGD/R group. After overexpression of the key protein NCOA4 in ferritinophagy, the inhibitory effect of ligustilide on ferroptosis was partially reversed, indicating that ligustilide may alleviate OGD/R injury of PC12 cells by blocking ferritinophagy and then inhibiting ferroptosis. The mechanism by which ligustilide reduced OGD/R injury in PC12 cells is that it suppressed the ferroptosis involved in ferritinophagy.


Asunto(s)
Animales , Ratas , Células PC12 , Ferroptosis/genética , Especies Reactivas de Oxígeno , Factores de Transcripción , Glutatión
2.
Chinese Pharmacological Bulletin ; (12): 1189-1194, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013795

RESUMEN

Aim To explore the protective effect of Zishen Huoxue Prescription on OGD/R-induced primary hippocampal neuron damage in rats and the possible mechanism. Methods After the isolated primary hippocampal neurons were identified by immunofluorescence, OGD/R induced neuronal damage, and the changes of autophagic flux at different re-oxygenation time were observed by confocal laser scanning microscopy. After OGD/R-induced primary hippocampal neurons were intervened with serum containing Zishen Huoxue Prescription, cell viability was detected by CCK-8, cell apoptosis was detected by flow cytometry, autophagosomes were detected by transmission electron microscopy, and autophagy-related protein expressions were detected by Western blot. Results 10% Zishen Huoxue Prescription-containing serum could significantly improve cell viability and reduce the proportion of cell apoptosis, increase the number of autophagosomes in neurons, and up-regulate the expression of autophagy-related protein PINK1, Parkin, and pATG16L1. Conclusions Zishen Huoxue Prescription can effectively resist OGD/R-induced apoptosis of primary hippocampal neurons in rats, and its effect may be related to the regulation of PINK1-Parkin pathway to promote mitophagy.

3.
Chinese Pharmacological Bulletin ; (12): 2378-2384, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013675

RESUMEN

Aim To investigate the effect of XNST and its monomeric components on the barrier structure and tight junction protein expression of brain microvascular endothelial cells damaged by oxygen glucose deprivation/reoxygenation (OGD/R) and the possible mechanism. Methods The mouse brain microvascular endothelial cell line bEnd. 3 was inoculated in the upper layer of the Transwell chamber to establish an OGD/R damage model, and the effect of the drug on the integrity of the endothelial cell barrier was investigated by the transmembrane resistance value and fluorescein-so-dium transmittance. Claudin-5 immunofluorescence staining was used to observe the changes of tight junction structure between endothelial cells. RT-PCR and Western blot were employed to detect mRNA and protein expression levels of tightly linked proteins Claudin-5 , Occludin, ZO-1. Western blot was applied to detect the expression levels of MAPKs (JNK, p38, ERK) , I kappa B a, I kappa B kinase phosphorylated protein expression, and Western blot and immunofluorescence were utilized to detect NF-K.B/p65 nucleation expression. Results XNST and its three monomers could significantly increase endothelial cell resistance and de- crease fluorescein-sodium transmittance. Claudin-5 fluorescence staining showed that the tight junction between cells in the model group was significantly damaged , while XNST and its monomer components could significantly improve its tight structure. RT-PCR and Western blot results showed that it could significantly upregulate the expression of mRNA and protein of Claudin-5, Occludin and ZO-1, and further study on the mechanism showed that XNST and its monomer components could significantly inhibit the phosphoryla-tion of JNK, p38 and ERK, inhibit the phosphorylation of I kappa B a and I kappa B kinases, and significantly inhibit the nuclear translocation of NF-KB/p65. Conclusion Both XNST and its monomeric components can exert cerebroprotective effects by increasing the tight junction structure between cells to promote barrier integrity, and the mechanism may be related to inhibition of NF-kB and MAPKs signaling pathway activation.

4.
Chinese Pharmacological Bulletin ; (12): 2331-2338, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013668

RESUMEN

Aim To investigate the role of autophagy regulated by the AMPK/mTOR pathway in the prevention of oxygen-glucose deprivation/reperfusion injury ( OGD/R) in astrocytes using oxymatrine ( OMT ) . Methods The isolated and purified astrocytes ( AS) were randomly divided into control group ( CON group), OGD/R group and OGD/R + OMT group (0. 1, 0. 2, 0. 4 mmol · L

5.
China Journal of Chinese Materia Medica ; (24): 6154-6163, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008814

RESUMEN

This study aims to investigate the mechanism of muscone in inhibiting the opening of mitochondrial permeability transition pore(mPTP) to alleviate the oxygen and glucose deprivation/reoxygenation(OGD/R)-induced injury of mouse hippocampal neurons(HT22). An in vitro model of HT22 cells injured by OGD/R was established. CCK-8 assay was employed to examine the viability of HT22 cells, fluorescence microscopy to measure the mitochondrial membrane potential, the content of reactive oxygen species(ROS), and the opening of mPTP in HT22 cells. Enzyme-linked immunosorbent assay was employed to determine the level of ATP and the content of cytochrome C(Cyt C) in mitochondria of HT22 cells. Flow cytometry was employed to determine the Ca~(2+) content and apoptosis of HT22 cells. The expression of Bcl-2(B-cell lymphoma-2) and Bcl-2-associated X protein(Bax) was measured by Western blot. Molecular docking and Western blot were employed to examine the binding between muscone and methyl ethyl ketone(MEK) after pronase hydrolysis of HT22 cell proteins. After the HT22 cells were treated with U0126, an inhibitor of MEK, the expression levels of MEK, p-ERK, and CypD were measured by Western blot. The results showed that compared with the OGD/R model group, muscone significantly increased the viability, mitochondrial ATP activity, and mitochondrial membrane potential, lowered the levels of ROS, Cyt C, and Ca~(2+), and reduced mPTP opening to inhibit the apoptosis of HT22 cells. In addition, muscone up-regulated the expression of MEK, p-ERK, and down-regulated that of CypD. Molecular docking showed strong binding activity between muscone and MEK. In conclusion, muscone inhibits the opening of mPTP to inhibit apoptosis, thus exerting a protective effect on OGD/R-injured HT22 cells, which is associated with the activation of MEK/ERK/CypD signaling pathway.


Asunto(s)
Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Simulación del Acoplamiento Molecular , Apoptosis , Oxígeno , Adenosina Trifosfato/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Glucosa/metabolismo
6.
China Journal of Chinese Materia Medica ; (24): 1897-1903, 2022.
Artículo en Chino | WPRIM | ID: wpr-928186

RESUMEN

Mitochondrion, as the main energy-supply organelle, is the key target region that determines neuronal survival and death during ischemia. When an ischemic stroke occurs, timely removal of damaged mitochondria is very important for improving mitochondrial function and repairing nerve damage. This study investigated the effect of ligustilide(LIG), an active ingredient of Chinese medicine, on mitochondrial function and mitophagy based on the oxygen and glucose deprivation/reperfusion(OGD/R)-induced injury model in HT22 cells. By OGD/R-induced injury model was induced in vitro, HT22 cells were pre-treated with LIG for 3 h, and the cell viability was detected by the CCK-8 assay. Immunofluorescence and flow cytometry were used to detect indicators related to mitochondrial function, such as mitochondrial membrane potential, calcium overload, and reactive oxygen species(ROS). Western blot was used to detect the expression of dynamin-related protein 1(Drp1, mitochondrial fission protein) and cleaved caspase-3(apoptotic protein). Immunofluorescence was used to observe the co-localization of the translocase of outer mitochondrial membrane 20(TOMM20, mitochondrial marker) and lysosome-associated membrane protein 2(LAMP2, autophagy marker). The results showed that LIG increased the cell viability of HT22 cells as compared with the conditions in the model group. Furthermore, LIG also inhibited the ROS release, calcium overload, and the decrease in mitochondrial membrane potential in HT22 cells after OGD/R-induced injury, facilitated Drp1 expression, and promoted the co-localization of TOMM20 and LAMP2. The findings indicate that LIG can improve the mitochondrial function after OGD/R-induced injury and promote mitophagy. When mitophagy inhibitor mdivi-1 was administered, the expression of apoptotic protein increased, suggesting that the neuroprotective effect of LIG may be related to the promotion of mitophagy.


Asunto(s)
Humanos , 4-Butirolactona/análogos & derivados , Apoptosis , Calcio/farmacología , Glucosa/metabolismo , Proteínas Mitocondriales , Mitofagia , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/genética
7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 24-33, 2022.
Artículo en Chino | WPRIM | ID: wpr-940172

RESUMEN

ObjectiveTo explore the protective effect of Salviae Miltiorrhizae Radix et Rhizoma and Puerariae Lobatae Radix (SP) extract on oxygen-glucose deprivation/reoxygenation (OGD/R)-injured SH-SY5Y cells based on oxidative stress and apoptosis. MethodThe extracts of the two medicinal materials mixed in different ratios were prepared. Human neuroblastoma SH-SY5Y cells were cultured in vitro and the injury was induced by OGD/R. Cell counting kit-8 (CCK-8) assay was used to screen the optimal ratio of the two medicinals and then the extract was used for further experiment. SH-SY5Y cells were classified into normal control group, OGD/R group, and low-, medium-, and high-dose SP (2∶1) extract groups (10, 30, 100 mg·L-1, respectively). Cells in the groups, except the normal control group, were rapidly reoxygenated for 12 h after 4 h OGD for modeling. Then cell viability was detected by CCK-8 and cell morphology was observed under the microscope. The release rate of lactate dehydrogenase (LDH), superoxide dismutase (SOD) activity, and content of glutathione (GSH) and malondialdehyde (MDA) were determined by spectrophotometry. The level of reactive oxygen species (ROS) was detected with 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) and mitochondrial membrane potential with JC-1 assay. The nuclear morphology was observed based on Hoechst 33342 staining, and apoptosis was examined by flow cytometry combined with Annexin V-FITC/PI staining. ResultThe viability of the cells was highest in the presence of the extract of the two medicinals mixed at the ratio of 2∶1. Compared with normal control group, OGD/R group showed damaged cell morphology, high release rate of LDH and levels of ROS and MDA (P<0.01), low SOD activity and GSH level (P<0.01), low mitochondrial membrane potential, and high apoptosis rate (P<0.01). Compared with OGD/R group, SP extract improved cell viability and cell morphology and reduce cell LDH release rate in a concentration-dependent manner (P<0.01). In addition, SP extract at 30, 100 mg·L-1 reduced the level of intracellular ROS and increased SOD activity and GSH level (P<0.05, P<0.01), and SP extract at 100 mg·L-1 decreased the content of MDA (P <0.05). Moreover, SP extract increased mitochondrial membrane potential, and SP extract at 30, 100 mg·L-1 lowered the apoptosis rate (P<0.01). ConclusionThe extract of Salvia miltiorrhiza Bunge and Radix Puerariae mixed at 2∶1 shows better protective effect on OGD/R-injured SH-SY5Y cells. The mechanism is the likelihood that it alleviates oxidative damage of cells and inhibits cell apoptosis.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 24-33, 2022.
Artículo en Chino | WPRIM | ID: wpr-940140

RESUMEN

ObjectiveTo explore the protective effect of Salviae Miltiorrhizae Radix et Rhizoma and Puerariae Lobatae Radix (SP) extract on oxygen-glucose deprivation/reoxygenation (OGD/R)-injured SH-SY5Y cells based on oxidative stress and apoptosis. MethodThe extracts of the two medicinal materials mixed in different ratios were prepared. Human neuroblastoma SH-SY5Y cells were cultured in vitro and the injury was induced by OGD/R. Cell counting kit-8 (CCK-8) assay was used to screen the optimal ratio of the two medicinals and then the extract was used for further experiment. SH-SY5Y cells were classified into normal control group, OGD/R group, and low-, medium-, and high-dose SP (2∶1) extract groups (10, 30, 100 mg·L-1, respectively). Cells in the groups, except the normal control group, were rapidly reoxygenated for 12 h after 4 h OGD for modeling. Then cell viability was detected by CCK-8 and cell morphology was observed under the microscope. The release rate of lactate dehydrogenase (LDH), superoxide dismutase (SOD) activity, and content of glutathione (GSH) and malondialdehyde (MDA) were determined by spectrophotometry. The level of reactive oxygen species (ROS) was detected with 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) and mitochondrial membrane potential with JC-1 assay. The nuclear morphology was observed based on Hoechst 33342 staining, and apoptosis was examined by flow cytometry combined with Annexin V-FITC/PI staining. ResultThe viability of the cells was highest in the presence of the extract of the two medicinals mixed at the ratio of 2∶1. Compared with normal control group, OGD/R group showed damaged cell morphology, high release rate of LDH and levels of ROS and MDA (P<0.01), low SOD activity and GSH level (P<0.01), low mitochondrial membrane potential, and high apoptosis rate (P<0.01). Compared with OGD/R group, SP extract improved cell viability and cell morphology and reduce cell LDH release rate in a concentration-dependent manner (P<0.01). In addition, SP extract at 30, 100 mg·L-1 reduced the level of intracellular ROS and increased SOD activity and GSH level (P<0.05, P<0.01), and SP extract at 100 mg·L-1 decreased the content of MDA (P <0.05). Moreover, SP extract increased mitochondrial membrane potential, and SP extract at 30, 100 mg·L-1 lowered the apoptosis rate (P<0.01). ConclusionThe extract of Salvia miltiorrhiza Bunge and Radix Puerariae mixed at 2∶1 shows better protective effect on OGD/R-injured SH-SY5Y cells. The mechanism is the likelihood that it alleviates oxidative damage of cells and inhibits cell apoptosis.

9.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 356-364, 2022.
Artículo en Chino | WPRIM | ID: wpr-1015769

RESUMEN

In this study, high-throughput sequencing technology was used to analyze the differentiallyexpressed microRNA (miRNA) of astrocyte-derived exosomes in control group and oxygen and glucosedeprivation/ reoxygenation (OGD/ R) group. Ultracentrifugation was used to extract exosomes from thesupernatant of astrocyte medium in the control group and OGD/ R group. Transmission electron microscopyshowed that exosomes had a typical vesicle shape with intact membrane and low electron content density. Nanoparticle tracking technology (NTA) detected astrocyte exosomes with a size of 100. 5 ± 31. 1 nm, accounting for 96. 8%. Western blot detection showed that the exosome contained exosome-specificproteins tumor-susceptibility protein (TSG101), heat shock protein 60 (Hsp60), ALG-2-interactingprotein X (ALIX). Compared with the control group, 41 miRNAs in the exosomes of the OGD / R groupwere significantly changed, of which 20 miRNAs were increased and 21 miRNAs were decreasedsignificantly (P < 0. 05). Gene ontology function (GO) analysis showed that significantly differentiallytarget genes were mainly involved in protein glycosylation, lipid metabolism, phosphorylation, Golgiapparatus, endoplasmic reticulum, endosome, cytoplasmic vesicles and cell protrusions, etc. KyotoEncyclopedia of Genes and Genomes (KEGG) pathway analysis found that differential miRNAs weremainly related to metabolic pathways and signaling pathways such as butyrate metabolism, ß-alaninemetabolism, fatty acid degradation, mitophagy and P53 signaling pathway. Sequencing analysis of theexosomal miRNAs derived from control and OGD / R astrocytes and target gene function enrichmentanalysis can be useful for the mechanism study of astrocyte exosomes in response to oxygen and glucosedeprivation reperfusion.

10.
China Journal of Chinese Materia Medica ; (24): 5665-5673, 2021.
Artículo en Chino | WPRIM | ID: wpr-921751

RESUMEN

The aim of this study was to investigate the mechanism of luteolin regulating lipoxygenase pathway against oxygen-glucose deprivation/reperfusion(OGD/R) injury in H9 c2 cardiomyocytes. First, Discovery Studio 2019 was used for the molecular docking of luteolin with three key enzymes including lipoxygenase 5(ALOX5), lipoxygenase 12(ALOX12), and lipoxygenase 15(ALOX15) in lipoxygenase pathway. The docking results showed that luteolin had high docking score and similar functional groups with the original ligand. From this, H9 c2 cardiomyocytes were cultured in vitro, and then the injury model of H9 c2 cardiomyocytes was induced by deprivation of oxygen-glucose for 8 h, and rehabilitation of oxygen-glucose for 12 h. Cell viability was detected by tetrazolium(MTT) colorimetry. H9 c2 cardiomyocytes were observed with a fluorescence inverted microscope, and colorimetry was used to detect the level of lactate dehydrogenase(LDH) in cell supernatant. The results showed that luteolin could significantly protect the morphology of H9 c2 cells, significantly improve the survival rate of H9 c2 cardiomyocytes in OGD/R injury model, reduce the level of LDH in cell supernatant, inhibit cytotoxicity, and maintain the integrity of cell membrane. The inflammatory cytokines interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α) were detected by enzyme-linked immunosorbent assay. Compared with the model group, luteolin can significantly reduce the release of IL-6 and TNF-α. Western blot was employed to detect the protein levels of ALOX5, ALOX12, and ALOX15 in lipoxygenase pathway. After luteolin intervention, the protein levels of ALOX5, ALOX12, and ALOX15 were significantly down-regulated compared with those in model group. These results indicate that luteolin can inhibit the release of IL-6 and TNF-α by restraining the activation of lipoxygenase pathway, thereby playing a protective role in the cardiomyocyte injury model induced by OGD/R.


Asunto(s)
Humanos , Apoptosis , Glucosa , Lipooxigenasas , Luteolina/farmacología , Simulación del Acoplamiento Molecular , Miocitos Cardíacos , Oxígeno , Daño por Reperfusión , Transducción de Señal
11.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 144-153, 2021.
Artículo en Chino | WPRIM | ID: wpr-1015078

RESUMEN

AIM: To study the protective effect and mechanism of rosuvastatin on cerebral ischemia-reperfusion injury. METHODS: (1) Cerebral infarction and OGD/R cell models were established to detect the effects of different concentrations of rosuvastatin on cell proliferation and apoptosis; (2) Different concentrations of rosuvastatin were used to treat OGD/R cell models and to observe rosuvastatin effects on cell morphology and expression and localization of UCP2-SIRT3 in cells; (3) UCP2 silent cell line was constructed to observe cell mitochondrial morphology and expression and localization of TOMM20 and SIRT3 molecules in cells, and to study the channels and mechanisms that play a protective role of rosuvastatin in OGD/R cell model; (4) The mitochondrial membrane potential, mitochondrial gene PGC1, Drp1 and Opa1 expression were detected to study the protective effect of rosuvastatin on mitochondria. RESULTS: (1) Rosuvastatin of different concentrations could significantly reduce OGD/R cell apoptosis and increase cell survival rate; (2) Rosuvastatin exerted cell protection by affecting the expression of UCP2 and SIRT3 in cells, thereby protecting cells from OGD/R injury; (3) Rosuvastatin affected the expression of TOMM20 by regulating UCP2, increased mitochondrial transmembrane transport and energy metabolism, enhanced mitochondrial function, and improved cell state and reduced apoptosis. CONCLUSION: Rosuvastatin inhibits mitochondrial damage of OGD/R cells by regulating UCP2/SIRT pathway, thereby exerting neuron protection.

12.
Chinese Pharmacological Bulletin ; (12): 1068-1075, 2021.
Artículo en Chino | WPRIM | ID: wpr-1014482

RESUMEN

Aim To investigate the effect of ginsenoside Rgl on PC 12 cell hypoxia-reoxygenation injury and its possible mechanism. Methods PC 12 cells were randomly divided into six groups. Except for the blank control group, all the other groups were hypoxia and hypoglycemia for 6 hours, and then reoxygenated and glycosylated for 24 hours to make OGD/R models. Each drug group was given corresponding drugs 2 hours before modeling pretreatment. DCFH-DA method was used to detect the ROS production in cells, Annexin V- FITC/PI double staining method was performed to detect cell apoptosis rate, ELISA method was used to detect LDH activity and IL-1 (3 content in cell supernatant, and Western blot was applied to detect the ex- pression of proteins of N0X2, p22phox, p47phox, NLRPl, ASC, Caspase-1, PSD95, Tau, p-Tau and observe the intervention effect of ginsenoside Rgl. Re sults Tempol, Apocynin and Rgl (5, 10 jjLmol • L"1) groups could significantly inhibit ROS production and apoptosis, reduce LDH release and IL-1 (3 content in cell supernatant; Apocynin and Rgl (5, 10 |xmol • L"1) groups could significantly down-regulate the expression of N0X2, p22phox and p47phox in cells. The Tempol, Apocynin and Rgl (5, 10 jxmol • L"1 ) groups could significantly decrease the protein expression of NLRP1, Caspase-1, ASC, IL-1 (3 and p-Tau, and markedly down-regulate the expression of PSD95 protein. Conclusion Rgl is likely to reduce the is- chemia-reperfusion injury of PC 12 cells by inhibiting the NOX2-NLRP1 pathway.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 9-18, 2021.
Artículo en Chino | WPRIM | ID: wpr-906418

RESUMEN

Objective:To investigate the effect of Buyang Huanwutang (BHT) on proliferation and differentiation in neural stem cells (NSCs) after oxygen-glucose deprivation/reoxygenation (OGD/R) injury. Method:NSCs isolated from the hippocampus of SD rats were cultured and randomly divided into a normoxia group, a model group, a BHT group, a rapamycin (Rapa) group, and a combination group [autophagy inhibitor 3-methyladenine (3-MA) combined with BHT]. The 20% blank serum was used in the normoxia group, and 20% BHT-medicated serum in the BHT group. The doses of Rapa and 3-MA were 1 μmol·L<sup>-1</sup> and 5 mmol·L<sup>-1</sup>, respectively. The cells were subjected to OGD/R except those in the normoxia group. The cell morphology was observed under a light microscope. NSCs were confirmed by immunofluorescence detection of nestin expression. The viability and proliferation of NSCs were assessed by cell counting kit-8 (CCK-8) assay and 5-ethynyl-2-deoxyuridine (EdU) labeling, respectively. Furthermore, Ad-mCherry-GFP-LC3B fluorescence assay was performed to investigate autophagy. The effect of BHT on autophagy-related protein expression was detected by western blot assay. Brain derived neurotrophic factor (BDNF), <italic>β</italic>-tubulin Ⅲ, and glial fibrillary acidic protein (GFAP) were evaluated by immunofluorescence assay. Result:OGD/R significantly reduced the cell viability of rat NSCs as compared with the normoxia group. Compared with the model group, the BHT group exhibited significantly improved viability of rat NSCs (<italic>P</italic><0.01). BHT induced the production of autophagosomes in NSCs after OGD. The BHT group showed increased expression of microtuble-associated protein 1 light chain 3Ⅱ (LC3Ⅱ) and Beclin-1 (<italic>P</italic><0.05,<italic>P</italic><0.01) and slightly changed p62 compared with the normoxia group, and significantly up-regulated LC3Ⅱ and Beclin-1 (<italic>P</italic><0.05,<italic>P</italic><0.01) and down-regulated expression of p62 (<italic>P</italic><0.01) compared with the model group. The Rapa group had similar effect as the BHT group (<italic>P</italic><0.05,<italic>P</italic><0.01), while the combination group inhibited the activity of autophagy (<italic>P</italic><0.01). As indicated by the results of ad-mCherry-GFP-LC3B, compared with the normoxia group, the model group showed increased fluorescence intensity (<italic>P</italic><0.01), and the BHT and Rapa groups could further increased the fluorescence intensity of autophagy (<italic>P</italic><0.01), while the combination group inhibited autophagy activity (<italic>P</italic><0.01). Immunofluorescence results revealed that compared with the normoxia group, the model group displayed significantly reduced positive cells of EdU, <italic>β</italic>-tubulin Ⅲ, GFAP, and BDNF (<italic>P</italic><0.01), and the BHT and Rapa groups exerted similar protective and promoting effects (<italic>P</italic><0.05,<italic>P</italic><0.01), while the combination group partially blocked the neuroprotection and differentiation ability of BHT (<italic>P</italic><0.05). Conclusion:BHT pretreatment can effectively protect rat NSCs against OGD-induced injury and promoted proliferation and differentiation by up-regulating autophagy.

14.
Journal of Pharmaceutical Practice ; (6): 112-117, 2021.
Artículo en Chino | WPRIM | ID: wpr-875668

RESUMEN

Objective To investigate the effects of upadacitinib on the polarization and inflammation of BV2 microglia after oxygen glucose deprivation/recovery (OGD/R) and to explore its mechanism of action. Methods The experiment was divided into 3 groups: control group, OGD group and upadacitinib treatment group. After BV2 cells were treated with OGD/R, MTT was used to detect cell survival rate. Wound scratch assay was used to detect the cell migration ability. qPCR was used to detect mRNA levels of M1-type polarization markers (CD11b, CD32, iNOS) and M2-type polarization markers (Arg-1, IL-10, CD206) of BV2 cells. ELISA was used to detect the levels of IL-1β, IL-6, and TNF-α in the culture medium. Western blot was used to detect the expression levels of JAK1/STAT6 pathway-related proteins. Results Upadacitinib increased the survival of BV2 cells after OGD/R (P<0.05), reduced the polarization of BV2 cells to M1 type (P<0.05). Upadacitinib significantly decreased the migration ability of BV2 cells induced by OGD/R (P<0.05), reduced the inflammatory factors secreted by BV2 cells induced by OGD/R: IL-1β, IL-6, TNF-α (P<0.05). Upadacitinib increased the survival rate of co-cultured PC12 cells (P<0.05). Upadacitinib significantly inhibited the expression levels of p-JAK1 and p-STAT6 proteins in BV2 cells activated by OGD/R induction (P<0.05). Conclusion Upadacitinib decreases polarization of BV2 induced by OGD/R to M1 type and reduces inflammation, which is related to JAK1/STAT6 pathway.

15.
China Journal of Chinese Materia Medica ; (24): 3931-3937, 2020.
Artículo en Chino | WPRIM | ID: wpr-828365

RESUMEN

This study aimed to investigate the effect and mechanism of ligustilide, the main active ingredient in Ligusticum wallichii, on mitochondria fission after PC12 cell injury induced by oxygen and glucose deprivation/reperfusion(OGD/R). In the experiment, an OGD/R model was established in vitro, and PC12 cells were pre-treated with ligustilide for 3 h, and then the cell viability was detected by CCK-8 method. The effect of different concentrations of ligustilide on the morphology of PC12 cells after OGD/R injury was observed under an inverted microscope. Transmission electron microscopy was used to observe the mitochondrial fission of PC12 cells after OGD/R injury. DCFH-DA immunofluorescence staining method was used to detect intracellular reactive oxygen species(ROS) changes. Changes in mitochondria membrane potential(MMP) were detected by flow cytometry. Hochest 33258 was used to observe the apoptosis of PC12 cells. Western blot was used to detect changes in cytochrome C(Cyt C) content in mitochondria and cytoplasm, and mitochondrial fission-related proteins Drp 1 and Fis 1. All results showed that compared with the model group, ligustilide significantly increased the survival rate of PC12 cells and the number of cells. Further experiments showed that ligustilide inhibited the release of ROS and decline of mitochondrial membrane potential in PC12 cells after OGD/R injury. Moreover, ligustilide reduced the release of Cyt C and promoted the expressions of Drp1 and Fis1 in mitochondrial fission proteins. Verification experiments showed that mitochondrial fission inhibitor mdivi-1 decreased cell survival rate and inhibited fission. The results indicated that ligustilide exerted neuro-protective effects by promoting mitochondrial fission and reducing cell damage. It preliminary proves that the mechanism of ligustilide on ischemic brain injury may be related to the promotion of mitochondrial fission and the maintenance of cell homeostasis.


Asunto(s)
Animales , Ratas , 4-Butirolactona , Apoptosis , Supervivencia Celular , Glucosa , Mitocondrias , Oxígeno , Células PC12 , Especies Reactivas de Oxígeno , Daño por Reperfusión
16.
China Journal of Chinese Materia Medica ; (24): 2686-2690, 2019.
Artículo en Chino | WPRIM | ID: wpr-773272

RESUMEN

To investigate the inhibitory effects and mechanism of Cistanche tubulosa ethanol extract( CTEE) against oxygen-glucose deprivation/reperfusion( OGD/R)-induced PC12 cells neuronal injury. In this study,OGD/R-induced PC12 cells were used to explore the neuroprotective effects of CTEE( 12. 5,25,50 mg·L-1) by detecting cell viability with MTT assay,apoptosis with AO/EB and Hoechst 33258,mitochondrial membrane potential changes with JC-1 staining,mitochondrial oxidative stress with MitoSOX staining,as well as the apoptosis-related protein expression( PARP,cleaved PARP,caspase-3,cleaved caspase-3,Bax,Bcl-2) with Western blot. RESULTS:: showed that CTEE effectively protected OGD/R-induced neuronal injury and increased the survival rate of PC12 cells.AO/EB and Hoechst 33258 staining showed that CTEE could effectively inhibit apoptosis. Moreover,JC-1 and MitoSOX staining results showed that CTEE decreased mitochondrial stress and mitochondrial membrane potential imbalance in PC12 cells in a concentration-dependent manner. Meanwhile,CTEE could obviously suppress the activation of key proteins in mitochondrial apoptosis pathway such as caspase-3 and PARP,and significantly inhibit the rise of Bax and down-regulation of Bcl-2. In conclusion,CTEE has obvious protective effects on OGD/R-induced PC12 cells neuronal injury,potentially via inhibiting mitochondrial oxidative stress and apoptosis-related signaling pathway.


Asunto(s)
Animales , Ratas , Apoptosis , Caspasa 3 , Metabolismo , Cistanche , Química , Etanol , Glucosa , Fármacos Neuroprotectores , Farmacología , Estrés Oxidativo , Oxígeno , Células PC12 , Extractos Vegetales , Farmacología , Poli(ADP-Ribosa) Polimerasa-1 , Metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Metabolismo , Proteína X Asociada a bcl-2 , Metabolismo
17.
Organ Transplantation ; (6): 116-121, 2018.
Artículo en Chino | WPRIM | ID: wpr-731719

RESUMEN

Objective To investigate the effect of oxygen glucose deprivation-reperfusion (OGD-R) in astrocytes overexpressing endothelin (ET)-1 on the proliferation of neural stem/progenitor cells (NSPCs). Methods OGD-R models of negative control astrocytes (C6-Mock) and astrocytes over-expressing ET-1 (C6-ET-1) were constructed. Transwell co-culture system of astrocytes and NSPCs was established. Morphologic observation and identification of the astrocytes and primary NSPCs were performed. The cells were divided into four groups: C6-Mock+NSPCs, OGD-R+C6-Mock+NSPCs, C6-ET-1+NSPCs and OGD-R+C6-ET-1+NSPCs groups and co-cultured for 0, 24, 48 and 72 h respectively. The diameter of neurosphere was measured in each group. Results In the C6-Mock and C6-ET-1 cells, type Ⅰ astrocytes in fibrous morphology were observed. Glial fibrillary acidic protein (GFAP) was expressed in the cytoplasm of these two types of cells. Primary NSPCs were positive for nestin staining. After co-culture for 48 and 72 h, the neurosphere diameter in the OGD-R+C6-Mock+NSPCs group was significantly greater than that in the C6-Mock+NSPCs group. The neurosphere diameter in the OGD-R+C6-ET-1+NSPCs group was considerably greater than that in the C6-ET-1+NSPCs group. The neurosphere diameter in the OGD-R+C6-ET-1+NSPCs group was significantly greater compared with that in the OGD-R+C6-Mock+NSPCs group (all P<0.05). Conclusions OGD-R astrocytes can promote the proliferation of NSPCs. ET-1 over-expression further accelerates the proliferation of NSPCs.

18.
The Journal of Practical Medicine ; (24): 3344-3347, 2017.
Artículo en Chino | WPRIM | ID: wpr-661400

RESUMEN

Objective To investigate the role of TLR4/NF-κB signal pathway in pathogenesis of brain inju-ry during deep hypothermia circulatory arrest(DHCA). Methods BV2 microglia cells were subjected to oxygen-glucose deprivation/reoxygenation(OGD/R),in vitro model for DHCA. The BV2 were randomly divided into the control group(C group)and the experimental group(O group). BV2 viability was determined by CCK-8 assay. TLR4 and its downstream signaling molecules ,MyD88 and phosphorylated NF-κB (p-p65) expressions were detected by Western blotting. TLR4 mRNA expression in BV2 microglial cells were determined by RT-PCR. Level of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in culture medium was detected by ELASA. Results Compared with the group C,BV2 microglia cell viability in experiment group was obviously weaker(P<0.05). Expressions of TLR4,MyD88 and phosphorylated NF-κB(p-p65)from the experiment group increased remarkedly than those from the group C (P < 0.05). TLR4 mRNA level was higher significantly in the group O than in the group C (P < 0.01). Production of IL-6 and TNF-α in the group O were up-regulated apparently compared to the group C(P<0.01). Conclusion TLR4/NF-κB signaling pathway contributed to activation of BV2 microglia cells treated by OGD/Reoxygenation ,which was probably the exactly way that involved in pathogenesis of brain injury during deep hypothermia circulatory arrest.

19.
The Journal of Practical Medicine ; (24): 3344-3347, 2017.
Artículo en Chino | WPRIM | ID: wpr-658481

RESUMEN

Objective To investigate the role of TLR4/NF-κB signal pathway in pathogenesis of brain inju-ry during deep hypothermia circulatory arrest(DHCA). Methods BV2 microglia cells were subjected to oxygen-glucose deprivation/reoxygenation(OGD/R),in vitro model for DHCA. The BV2 were randomly divided into the control group(C group)and the experimental group(O group). BV2 viability was determined by CCK-8 assay. TLR4 and its downstream signaling molecules ,MyD88 and phosphorylated NF-κB (p-p65) expressions were detected by Western blotting. TLR4 mRNA expression in BV2 microglial cells were determined by RT-PCR. Level of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in culture medium was detected by ELASA. Results Compared with the group C,BV2 microglia cell viability in experiment group was obviously weaker(P<0.05). Expressions of TLR4,MyD88 and phosphorylated NF-κB(p-p65)from the experiment group increased remarkedly than those from the group C (P < 0.05). TLR4 mRNA level was higher significantly in the group O than in the group C (P < 0.01). Production of IL-6 and TNF-α in the group O were up-regulated apparently compared to the group C(P<0.01). Conclusion TLR4/NF-κB signaling pathway contributed to activation of BV2 microglia cells treated by OGD/Reoxygenation ,which was probably the exactly way that involved in pathogenesis of brain injury during deep hypothermia circulatory arrest.

20.
China Journal of Chinese Materia Medica ; (24): 140-145, 2017.
Artículo en Chino | WPRIM | ID: wpr-230980

RESUMEN

The present study aims to investigate the effects of Xuesaitong (XST)injection on inflammation induced by OGD/reoxygenation in BV2 microglia cell and explore the underlying mechanisms.The effects of XST injection were evaluated in terms of cell viability, secretion of TNF-α, IL-1β, IL-6 and IL-10 into culture media, protein expression of p-ERK1/2, p-JNK and p-p38, and nuclear translocation of NF-κB p65. The results showed that XST injection significantly increased cell viability, suppressed release of TNF-α, IL-1β, IL-6 and IL-10 and down-regulated p-JNK1/2 and p-p38 MAPK expression in BV2 microglia cells induced by OGD/R injury, whereas it had no effect on p-ERK1/2 expression. Furthermore, XST injection suppressed nuclear translocation of NF-κB p65 in BV2 microglia after OGD/R injury. These data indicate that the neuroprotective effects of XST injection on OGD/R injury are associated with its inhibition of pro-inflammatory mediator production, down-regulation of JNK1/2 and p38 MAPK activation, and suppression of NF-κB p65 nuclear translocation in BV2 microglia cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA