Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Braz. J. Pharm. Sci. (Online) ; 59: e21460, 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1439502

RESUMEN

Abstract Clay minerals are still widely used in pharmaceutical products for human health and cosmetic purposes. Pre-formulation studies were conducted to identify solid-state properties of pink clay, a sample from Diamantina, Brazil. Among the solid properties to be analyzed, we have selected type identification, iron phases, crystallinity, powder flow characteristics, thermal behavior, and non-isothermal phase transition kinetics. The pink clay is composed of (1:1) clay type and kaolinite as the main component. The Mössbauer spectrum of pink clay shows Fe3+(α-Fe2O3) Clay minerals are still widely used in pharmaceutical products for human health and cosmetic purposes. Pre-formulation studies were conducted to identify solid-state properties of pink clay, a sample from Diamantina, Brazil. Among the solid properties to be analyzed, we have selected type identification, iron phases, crystallinity, powder flow characteristics, thermal behavior, and non-isothermal phase transition kinetics. The pink clay is composed of (1:1) clay type and kaolinite as the main component. The Mössbauer spectrum of pink clay shows Fe3+(α-Fe2O3) hematite, Fe2+, and Fe3+ with large Δ/2ξq of about 2.80 and 2.69 mm.s-1 respectively, related to iron silicates, most likely pyroxene, and a superparamagnetic Fe3+. Pink clay exhibits poor flow properties. The thermal behavior indicates a phase-transition between 400 - 600 ºC associated with the dehydroxylation of the pink clay system requiring ~300 kJ mol-1, being constant until the process reaches a conversion of ~50% when the energy is enhanced to ~530 kJ mol-1, concluding the whole dehydroxylation process (α=80%). Solid-state properties and characteristics found for the pink clay must be considered for the proper design of formulations. This type of clay shows unique pharmaceutical properties that can be favorably exploited by the cosmetic industry


Asunto(s)
Brasil/etnología , Arcilla/clasificación , Polvos/análisis , Caolín/farmacología
2.
Rev. bras. farmacogn ; 27(2): 236-244, Mar.-Apr. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-843802

RESUMEN

ABSTRACT A 33 Box–Behnken design and Response Surface Methodology were performed to evaluate the influence of extract feed rate, drying air inlet temperature and spray nozzle airflow rate on the process yield, stability parameters (moisture content and water activity) and on several physicomechanical properties of spray-dried rosemary extracts. Powder yield ranged from 17.1 to 74.96%. The spray-dried rosemary extracts showed moisture content and water activity below 5% and 0.5%, respectively, which indicate their chemical and microbiological stabilities. Even without using drying aids, some sets of experimental conditions rendered dried products with suitable flowability and compressibility characteristics for direct preparation of solid dosage forms. Analysis of variance and Response Surface Methodology proved that studied factors significantly affected most of the spray-dried rosemary extract quality indicators at different levels. The main processing parameter affecting the spray-dried rosemary extract characteristics was inlet temperature. The best combination of parameters used to obtain a reasonable yield of stable dry rosemary extracts with adequate technological properties for pharmaceutical purpose involves an extract feed rate of 2 ml/min, 80 °C inlet temperature and 40 l/min SA. The design of experiments approach is an interesting strategy for engineering spray-dried rosemary extracts with improved characteristics for pharmaceutical industrial purpose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA