Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Rev. biol. trop ; 67(3)jun. 2019.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1507523

RESUMEN

Damage by Hypsipyla grandella Zeller restricts the success of plantations of Cedrela odorata. The most critical and vulnerable infection period by H. grandella is during the first three years. The aim was to estimate the expected genetic gain for the selection of clones of fast growth and resistant to the attack by this insect. A trial with 40 clones produced by grafting was planted in Veracruz, Mexico. Heritability, genetic correlations and genetic gain of clones were estimated with data at two years-old. The survival rate of the trial was of 97 % (466 living ramets in total), 2.84 m in total high and 2.32 cm of average normal diameter. Aditionally, 9.9 % of the ramets did not present attacks, indication of evasion, and 0.6 percent without response to attack. With response to attack 89.5 % of the ramets (several degrees of tolerance): 29 % with a single shoot, 14.2 % with several shoots and 46.3 % with a dominant shoot of several shoots formed. The clonal heritability of normal diameter, height, volume, stem taper index, number of attacks and response to the attack was H2c = 0.81, 0.80, 0.81, 0.61, 0.34, and 0.26. The genetic correlations between height, diameter and volume were ≥ 0.95, and the correlation of the volume with the incidence and the response to the attack was rg = -0.31 and rg = 0.62, that is a decrease in number of attacks and moderate increase in tolerance. With a selection intensity of 10 %, selecting the four clones with higher volume will produce a genetic gain of 82 % for volume, a decrease of 10.9 % of number of attacks and 6.3 % of better recovery from damage; this is more tolerance to the insect attack. The genetic gain justifies the use of the best clones in commercial plantations in Veracruz, Mexico.


El daño por Hypsipyla grandella limita el éxito de las plantaciones de Cedrela odorata. El periodo más crítico y vulnerable es durante los primeros tres años. El objetivo del estudio fue estimar la ganancia genética esperada en la selección de clones de mayor crecimiento y resistentes al ataque del insecto. Un ensayo de 40 clones producidos por injertos fue plantado en Veracruz, México. Con datos a la edad de dos años se estimaron: la heredabilidad, correlaciones genéticas y ganancia genética de los clones. El ensayo presentó una supervivencia del 97 % (466 rametos vivos en total), con 2.84 m de altura y 2.32 cm de diámetro normal promedio. El 9.9 % de los rametos no presentaron ataques, indicando evasión, y se estimó un 0.6 % sin respuesta al ataque. Con respuesta al ataque 89.5 % de los rametos (diferentes niveles de tolerancia): 29 % con un solo brote, 14.2 % con varios brotes, y 46.3 % con un brote dominante de varios brotes formados. La heredabilidad clonal del diámetro normal, altura, volumen, índice de conicidad, número de ataques y respuesta al ataque fue de H2 c = 0.81, 0.80, 0.81, 0.61, 0.34 y 0.26, respectivamente. Las correlaciones genéticas entre la altura, diámetro y volumen fueron ≥ 0.95, y del volumen con la incidencia y la respuesta al ataque de rg = -0.31 y rg = 0.62, es decir se presentó una disminución en el número de ataques y el aumento moderado en la tolerancia. Con una intensidad de selección del 10 %, seleccionando los cuatro clones de mayor volumen se obtuvo una ganancia genética de 82 % para el volumen, una disminución de 10.9 % de ataques y 6.3 % mejor recuperación del daño, esto es más tolerancia al ataque del insecto. La ganancia genética justifica la utilización de los mejores clones en plantaciones comerciales para Veracruz.

2.
Acta biol. colomb ; 14(supl.1): 365-382, Dec. 2009.
Artículo en Español | LILACS | ID: lil-634975

RESUMEN

En diciembre de 2008, se reportaron 125 millones de hectáreas de variedades transgénicas de soya, maíz, algodón y canola, sembradas en 23 países de los cinco continentes. Estas variedades fueron transformadas con genes de origen procariote, que les confieren la capacidad de resistir el ataque de insectos lepidópteros o tolerar dosis comerciales de herbicidas. Desde el inicio de la ingeniería genética, se ha planteado la pregunta de si estos organismos, liberados de manera masiva en los agroecosistemas, pueden causar efectos ambientales negativos en el mediano plazo, o efectos evolutivos desastrosos en el largo plazo. Una manera de analizar este problema, es considerar si pueden escapar a la selección natural darwinista, por el hecho de haberse introducido genes foráneos mediante manipulación humana. Para ello, se estudia la literatura disponible sobre el flujo de genes, desde los cultivos modificados hacía sus parientes silvestres estrechamente relacionados. Existe evidencia empírica de la hibridación entre materiales mejorados por métodos convencionales (hibridación, retrocruces, selección) o biotecnológicos (transferencia de genes foráneos) y parientes silvestres estrechamente relacionados. En todo caso, los efectos de estas hibridaciones dependen de la interacción entre el gen transferido y la planta silvestre pariente de la planta hospedera, en el ecosistema particular en que ocurra. El mayor efecto ambiental y evolutivo, es el resultado de la introgresión del transgen en el pariente silvestre, proceso que implica la estabilización del transgen en el genoma hospedero, resultado de sucesivas generaciones de hibridación y retrocruce. La introgresión depende más de la naturaleza del gen, y del lugar que ocupa en el genoma donante, que del mecanismo de introducción en dicho parental. No se han reportado efectos negativos sobre la diversidad genética de las especies transformadas, ni sobre el ambiente o los consumidores. En el contexto de la evidencia analizada, parecería que los cultivos transgénicos no escapan a la selección natural darwinista, sin embargo es muy temprano en términos evolutivos para llegar a una conclusión sobre este asunto.


In December 2008, 125 million hectares of transgenic varieties of soybean, corn, cotton and canola, were reported planted in 23 countries on five continents. These varieties were transformed with genes of prokaryote origin, rendering them resistant to lepidopteran insects attack or toleratant to commercial herbicides. Since the beginning of genetic engineering, the question whether mass release of these crops in agroecosystems, can cause either negative environmental effects in the medium term or evolutionary effects in the long term, has been raised. One way of analyzing this problem is to consider whether they can escape Darwinian natural selection, because foreign genes have been introduced through human manipulation. To this end, I study the available literature on gene flow from modified crops to their wild closely related relatives. There is empirical evidence of hybridization between improved materials, by both conventional methods (hybridization, backcross, selections) and biotechnological (transfer of foreign genes), and closely related wild relatives. In any case, the effects of these hybrids depend on the interaction between the transferred gene and the wild relative, the particular ecosystem in which it occurs. The biggest environmental and evolutionary impact is the result of introgression of a transgene in the wild relative, a process that involves stabilization of the transgene in the host genome, as a result of successive generations of hybridization and backcrossing. The introgression depends more upon the nature of the gene and its localization in the donnor s genome, than on the mechanism of introduction. No negative effects on the genetic diversity of species genetically modified, have been reported, neither on the environment or consummers. In the context of the evidence discussed, it appears s if genetic modified crops do not escape Darwinian natural selection, however it is very early in evolutionary terms to reach a conclusion on this matter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA