Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
China Pharmacy ; (12): 793-800, 2024.
Artículo en Chino | WPRIM | ID: wpr-1013539

RESUMEN

OBJECTIVE To study the extraction technology of Sophora flavescens-Phellodendron chinense drug pair and provide a reference for the development of new drugs for the treatment of anorectal diseases. METHODS Using the contents of total alkaloids of S. flavescens (matrine+oxymatrine), berberine hydrochloride and total flavonoid, and extract yield as evaluation indicators, analytic hierarchy process-entropy weight method was used to calculate the weight coefficient of each indicator, and was combined with Box-Behnken design-response surface method to study the extraction technology of S. flavescens-P. chinense drug pair and verify it. RESULTS The optimal extraction technology of S. flavescens-P. chinense drug pair was immersed in 12-fold amount of 58% ethanol for 30 minutes and extracted twice, each time for 120 minutes. The relative error between the verification experimental results and the predicted value was 1.88%. CONCLUSIONS The obtained extraction technology is stable and feasible and can provide reference for the application of S. flavescens-P. chinense drug pair and development of new drugs.

2.
China Pharmacy ; (12): 298-302, 2023.
Artículo en Chino | WPRIM | ID: wpr-961662

RESUMEN

OBJECTIVE To establish the fingerprint of Sophora flavescens, and to screen differential components and determine their contents. METHODS HPLC fingerprints of 12 batches of S. flavescens were established by using Similarity Evaluation System of Chromatographic Fingerprints of TCM (2012 edition); common peaks were identified and their similarities were evaluated. Chemical pattern recognition analysis [cluster analysis (CA),principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA)] were performed with SIMCA 14.1 and SPSS 23.0 software, and differential components which influenced the quality of S. flavescens were screen with variable importance in the projection(VIP)>1 as standard. Meanwhile, the contents of 4 kinds of differential components were determined by the same HPLC method. RESULTS There were 17 common peaks in the fingerprints of 12 batches of S. flavescens,and their similarities were all higher than 0.96. A total of 6 common peaks were identified, i.e. oxymatrine (peak 1), oxysophocarpine (peak 2), matrine (peak 10), trifolirhizin (peak 14), kurarinone (peak 16) and norkurarinone (peak 17). Results of CA, PCA and OPLS-DA showed that 12 batches of S. flavescens were divided into 3 categories according to producing area, i.e. S1-S7 (Shangzhou District of Shaanxi Province) were grouped into one category, S8-S10 (Yichuan County of Henan Province) into one category and S11-S12 (Chifeng City of Inner Mongolia) into one category. VIPs of matrine, norkurarinone, kurarinone and oxysophocarpine and the chemical components represented by peak 11 and 9 were all greater than 1. The contents of matrine, norkurarinone, kurarinone and oxysophocarpine in 12 batches of S. flavescens were 2.65-4.93, 1.54-3.44, 9.63-12.94 and 5.08-6.10 mg/g, respectively. CONCLUSIONS HPLC fingerprint of S. flavescens is established successfully in the study, and can be used to screen 6 differential components by combining with chemical pattern recognition analysis, which can provide reference for quality control of S. flavescens.

3.
China Pharmacy ; (12): 1949-1954, 2023.
Artículo en Chino | WPRIM | ID: wpr-980586

RESUMEN

OBJECTIVE To establish the fingerprints of Ardisia crenata, Sophora tonkinensis and their couplet medicines, and to determine the contents of five components in them. METHODS Using water as solvent, single lyophilized powder of A. crenata and S. tonkinensis and combined lyophilized powder of their couplet medicines were prepared by combining lyophilization technology. The fingerprints of three lyophilized powder samples were established by using high-performance liquid chromatography (HPLC), and the contents of 5 kinds of components such as gallic acid were determined simultaneously. RESULTS There were 5, 10 and 14 common peaks in the fingerprints for single lyophilized powder of A. crenata and S. tonkinensis and combined lyophilized powder of their couplet medicines; the similarities of them with the control fingerprints were all greater than 0.90. For combined lyophilized powder of couplet medicines, peak 3 Δ 基金项目 国家重点研发计划项目(No.2018YFC1708100);贵 州省科技计划项目(No.黔科合基础-ZK〔2022〕一般483,No.黔科合成 was identified as gallic acid, peak 4 as matrine, peak 6 as 果〔2021〕一般137);贵州省教育厅高等学校科学研究项目(青年项目) oxymatrine, peak 8 as bergenin, and peak 14 as trifolirhizin. In single lyophilized powder of A. crenata, the average contents of gallic acid and bergenin were 0.499 3 and 4.962 6 mg/g, respectively. In single lyophilized powder of S.tonkinensis, the average contents of matrine, oxymatrine and trifolirhizin were 3.046 0, 2.336 6 and 0.278 6 mg/g, respectively. In combined lyophilized powder of couplet medicines, the average contents of gallic acid, matrine, oxymatrine, bergenin and trifolirhizin were 0.560 6, 2.548 7, 1.382 2, 5.960 7 and 0.279 1 mg/g, respectively. The transfer rates were 8.87%-513.19%. CONCLUSIONS The established fingerprint and content determination methods are stable and feasible, and can be used for the quality control of A. crenata and S. tonkinensis and their couplet medicines. The average contents of matrine and oxymatrine in combined lyophilized powder of A. crenata-S. tonkinensis couplet medicines are decreased.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 126-133, 2023.
Artículo en Chino | WPRIM | ID: wpr-979457

RESUMEN

ObjectiveTo compare the effects of total alkaloids, matrine, and sophoridine extracted from Sophora alopecuroides on the activity of pheochromocytoma cells (PC12 cells). MethodThe effect of S. alopecuroides total alkaloids, matrine, and sophoridine at concentrations of 2, 1, 0.5, 0.25, 0.125, and 0.062 5 g·L-1 on the proliferation of PC12 cells was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The lactate dehydrogenase (LDH) leakage rate was measured by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to assess cell apoptosis rate, cell cycle distribution, and intracellular Ca2+ levels. Real-time quantitative polymerase chain reaction (Real-time PCR) was performed to determine the mRNA transcription levels of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Protein expression levels of apoptosis-related proteins Caspase-3, Caspase-8, Bcl-2, and Bax were detected by Western blot. ResultCompared to the control group, S. alopecuroides total alkaloids, matrine, and sophoridine inhibited the proliferation of PC12 cells, increased LDH leakage rate, enhanced intracellular Ca2+ fluorescence intensity, and induced cell apoptosis in concentration-dependent manner (P<0.05, P<0.01). Among them, S. alopecuroides total alkaloids had the strongest inhibitory effect on cell proliferation and induction of apoptosis in PC12 cells (P<0.01). After treatment with S. alopecuroides total alkaloids, matrine, and sophoridine, the cell cycle progression of PC12 cells was arrested at G1/G0 in the S. alopecuroides total alkaloids group, and at G1/S in the matrine and sophoridine groups. The expression levels of Bax mRNA were significantly increased (P<0.05, P<0.01), while the expression levels of Bcl-2 mRNA were significantly decreased (P<0.05, P<0.01). All treatments significantly downregulated the expression of the anti-apoptotic protein Bcl-2 (P<0.05, P<0.01) and upregulated the expression of the pro-apoptotic proteins Bax, Caspase-3, and Caspase-8 (P<0.05, P<0.01), with the most significant protein expression changes observed in the S. alopecuroides total alkaloids group. ConclusionAmong the S. alopecuroides total alkaloids, matrine, and sophoridine, S. alopecuroides total alkaloids exhibit the strongest inhibitory effect on the activity of PC12 cells, and its mechanism of action may be related to the inhibition of anti-apoptotic protein expression, upregulation of pro-apoptotic protein expression, and activation of the mitochondrial Caspase-8 apoptotic pathway.

5.
Acta Pharmaceutica Sinica ; (12): 1317-1327, 2023.
Artículo en Chino | WPRIM | ID: wpr-978697

RESUMEN

italic>Sophora flavescens is a traditional Chinese medicine rich in flavonoids and has wide application potential in drug development and clinical practice. In this study, a total of 227 flavonoids were detected among five tissues of S. flavescens during anthesis using widely targeted metabolomics techniques. There were 137 flavonoids shared by five S. flavescens tissues and 18 root-specific flavonoids. There were 156, 155, 156 and 150 differentially accumulated metabolites identified in stem, leaf, flower, and young pod, respectively, compared with root. Forty-seven potentially active flavonoid components in S. flavescens were identified using the PubChem and SwissADME databases. The 58 potential target proteins for these potentially active components were predicted to be important in the treatment of type 2 diabetes mellitus (T2DM) based on the SwissTargetPrediction and GeneCards database. These 58 target proteins were used to construct a protein-protein interaction network through the STRING database, from which we performed GO and KEGG functional enrichment analysis. The mechanisms by which S. flavescens flavonoids may be useful in the treatment of T2DM was further explored in a multi-level and systematic way based on a "component-target-pathway" network. Finally, ten key potentially effective components were identified and found to be mainly distributed in the roots, flowers, and pods, and their content varied significantly between tissues. The results predict that the key targets of S. flavescens flavonoids in the treatment of T2DM are AKT1, ESR1, EGFR, PIK3R1, TNF and PTGS2, and that they play a hypoglycemic role through the regulation of endocrine resistance, AGE-RAGE, the PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance and other signaling pathways. This analysis of the tissue distribution and network pharmacology of S. flavescens flavonoids provides a theoretical basis for further studies on S. flavescens metabolites, the rational development and utilization of the S. flavescens aboveground parts, and initiates a comprehensive exploration of the mechanisms by which S. flavescens can be used in the treatment of T2DM.

6.
Malaysian Journal of Microbiology ; : 74-82, 2023.
Artículo en Inglés | WPRIM | ID: wpr-988591

RESUMEN

Aims@#The current study was aimed to evaluate the antibacterial activity of biogenic synthesized golden nanoparticles from Sophora flavescens Aiton roots aqueous extract against multidrug-resistant (MDR) clinical bacterial isolates.@*Methodology and results@#The green synthesis of gold nanoparticles (AuNPs) was accomplished using S. flavescens roots aqueous extract and examined using many accepted techniques. The antibacterial activity of S. flavescens extract and the aqueous AuNPs at concentrations (7% and 9%) ppm were investigated against two clinical MDR bacteria, including Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa). The findings demonstrate inhibitory activity against the selected MDR bacterial isolates for the aqueous extract of S. flavescens and the aqueous AuNPs noted by the significant decrease in the number of bacteria after treatment with highly significant differences (P≤0.01) compared to the untreated control.@*Conclusion, significance and impact of study@#Sophora flavescens root extracts and their biosynthesized AuNPs with antibacterial activity may find broad applications in fighting MDR pathogenic bacteria and therapeutic manufacturing.


Asunto(s)
Antibacterianos , Sophora flavescens
7.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 65-80, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971665

RESUMEN

Acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had caused a global pandemic since 2019, and posed a serious threat to global health security. Traditional Chinese medicine (TCM) has played an indispensable role in the battle against the epidemic. Many components originated from TCMs were found to inhibit the production of SARS-CoV-2 3C-like protease (3CLpro) and papain-like protease (PLpro), which are two promising therapeutic targets to inhibit SARS-CoV-2. This study describes a systematic investigation of the roots and rhizomes of Sophora tonkinensis, which results in the characterization of 12 new flavonoids, including seven prenylated flavanones (1-7), one prenylated flavonol (8), two prenylated chalcones (9-10), one isoflavanone (11), and one isoflavan dimer (12), together with 43 known compounds (13-55). Their structures including the absolute configurations were elucidated by comprehensive analysis of MS, 1D and 2D NMR data, and time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculations. Compounds 12 and 51 exhibited inhibitory effects against SARS-CoV-2 3CLpro with IC50 values of 34.89 and 19.88 μmol·L-1, repectively while compounds 9, 43 and 47 exhibited inhibitory effects against PLpro with IC50 values of 32.67, 79.38, and 16.74 μmol·L-1, respectively.


Asunto(s)
Flavonoides/química , SARS-CoV-2 , Rizoma , COVID-19 , Péptido Hidrolasas , Antivirales/química
8.
Chinese journal of integrative medicine ; (12): 424-433, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982275

RESUMEN

OBJECTIVE@#To investigate the effects of composite Sophora colon-soluble Capsule (CSCC) on gut microbiota-mediated short-chain fatty acids (SCFAs) production and downstream group 3 innate lymphoid cells (ILC3s) of dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice model.@*METHODS@#The main components of CSCC were analyzed by hybrid ultra-high-performance liquid chromatography ion mobility spectromety quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF/MS). Twenty-four male BALB/c mice were randomly divided into 4 groups (n=6) by using a computer algorithm-generated random digital, including control, DSS model, mesalazine, and CSCC groups. A DSS-induced colitis mice model was established to determine the effects of CSCC by recording colonic weight, colonic length, index of colonic weight, and histological colonic score. The variations in ILC3s were assessed by immunofluorescence and flow cytometry. The results of gut microbiota and SCFAs were acquired by 16s rDNA and gas chromatography-mass spectrometry (GC-MS) analysis. The expression levels of NCR+ ILC3-, CCR6+ Nkp46- (Lti) ILC3-, and ILCreg-specific markers were detected by enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction and Western blot, respectively.@*RESULTS@#The main components of CSCC were matrine, ammothamnine, Sophora flavescens neoalcohol J, and Sophora oxytol U. After 7 days of treatment, CSCC significantly alleviated colitis by promoting the reproduction of intestinal probiotics manifested as upregulation of the abundance of Bacteroidetes species and specifically the Bacteroidales_S24-7 genus (P<0.05). Among the SCFAs, the content of butyric acid increased the most after CSCC treatment. Meanwhile, compared with the model group, Lti ILC3s and its biomarkers were significantly downregulated and NCR+ ILC3s were significantly elevated in the CSCC group (P<0.01). Further experiments revealed that ILC3s were differentiated from Lti ILC3s to NCR+ ILC3s, resulting in interleukin-22 production which regulates gut epithelial barrier function.@*CONCLUSION@#CSCC may exert a therapeutic effect on UC by improving the gut microbiota, promoting metabolite butyric acid production, and managing the ratio between NCR+ ILC3s and Lti ILC3s.


Asunto(s)
Masculino , Animales , Ratones , Colitis Ulcerosa/patología , Inmunidad Innata , Ácido Butírico/uso terapéutico , Sophora , Microbioma Gastrointestinal , Linfocitos , Colon , Colitis/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
9.
Journal of Pharmaceutical Practice ; (6): 722-732, 2023.
Artículo en Chino | WPRIM | ID: wpr-1003618

RESUMEN

Objective To analyze the main active components and potential molecular mechanism of Sophora flavescens against breast cancer based on network pharmacology and molecular docking. Methods The chemical constituents were collected and screened by TCMSP, ETCM database and literature review. The targets of active ingredients were predicted by Swiss Target Prediction database. Breast cancer-related targets were collected by GeneCards, TTD, Drugbank and OMIM. The anti-breast cancer targets of Sophora flavescens were screened by Venny 2.1.0 software. Cytoscape software was used to construct the network diagram of Sophora flavescens-key active ingredients-targets. STRING database was used to analyze the common targets, and PPI network diagram was constructed. GO function enrichment analysis and KEGG pathway enrichment analysis of key target proteins were performed by DAVID database and Hiplot online platform. Schrodinger software was used to calculate the molecular docking between the active ingredients and targets. Molecular biological methods were used to verify the key targets. Results A total of 36 active components with clear structures were screened from Sophora flavescens. 70 anti-breast cancer targets of Sophora flavescens were screened out. 12 core targets including EGFR, AKT1, ESR1, SRC, CYP19A1, AR and ABCB1 participate in endocrine resistance, EGFR tyrosine kinase inhibitors and estrogen signaling pathways in breast cancer. Moreover, the docking score between the core component and the key target AR is the highest. In vitro experiments showed that the extract of Sophora flavescens can inhibit the proliferation of breast cancer cells, induce cell apoptosis and up-regulate AR protein expression. Conclusion It was revealed that Sophora flavescens plays an anti-breast cancer role by regulating complex biological processes through multiple components acting on multiple targets and signaling pathways. The upregulation of AR protein by Sophora flavescens may become a new therapeutic strategy for the treatment of breast cancer.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 122-129, 2023.
Artículo en Chino | WPRIM | ID: wpr-998170

RESUMEN

ObjectiveTo explore the antidepressant effect of Sophora flavescens seed extract and its molecular mechanism. MethodA mouse depression model was established by intraperitoneal injection of lipopolysaccharide(LPS), and normal group, model group, fluoxetine group(2.5 mg·kg-1), and S. flavescens seed low, medium and high dose groups(200, 400, 800 mg·kg-1) were set up for 7 d of consecutive gavage. Then the antidepressant effect of S. flavescens seed extract was evaluated by using open field test, elevated plus maze test and forced swimming test. Pathological morphological changes in the hippocampal tissue was observed by hematoxylin-eosin(HE) staining. Protein expression levels of G1/S-specific cyclin D1(Cyclin D1), Wnt1, β-catenin and phosphorylated glycogen synthase kinase-3β(p-GSK-3β) in mouse brain tissues were detected by Western blot. Hippocampal cell apoptosis was detected by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL). ResultThe results of mouse behavioral experiments showed that compared with the normal group, the speed of movement in the open field and the distance of movement in the central area of the open field, and the time spent on the open arms of the elevated plus maze were significantly reduced in the model group(P<0.01), while immobility time in the forced swimming test was significantly increased(P<0.05). Compared with the model group, the S. flavescens seed medium and high dose groups had increased speed of movement in the open field test and time spent on the open arms of the elevated plus maze test(P<0.05, P<0.01), and decreased immobility time in the forced swimming test(P<0.05), the distance of movement in the central area of the open field test increased in the high dose group(P<0.05). HE staining results showed that compared with the normal group, the hippocampal neuron structure of mice in the model group was damaged. Compared with the model group, after treatment of S. flavescens seed extract, the pathological state of the mouse hippocampal neuron structure was alleviated, and the neurons increased, were neatly arranged, and the cytoplasm was clear. Western blot results showed that the protein expression levels of Wnt1 and β-catenin in mouse brain tissue were significantly decreased(P<0.01), while the protein expression levels of Cyclin D1 and p-GSK-3β were significantly increased(P<0.01) after LPS injection. Compared with the model group, protein expression levels of Wnt1 and β-catenin in brain tissue of S. flavescens seed medium and high dose groups were significantly increased(P<0.01), while the protein expression levels of Cyclin D1 and p-GSK-3β were significantly decreased(P<0.01). TUNEL staining results showed that the hippocampal cell apoptosis rate in the model group was significantly increased compared with that of the normal group(P<0.01), while the hippocampal cell apoptosis rate in the S. flavescens seed medium and high dose groups was significantly decreased compared with that of the model group(P<0.01). ConclusionS. flavescens seed extract can effectively improve the severity of depression in LPS-induced depressed mice, and its molecular mechanism is related to the regulation of neuroinflammation and hippocampal neuronal apoptosis mediated by Wnt/β-catenin signaling pathway.

11.
Chinese Pharmacological Bulletin ; (12): 348-356, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013863

RESUMEN

Aim To elucidate the molecular mechanism of Sophora tonkinensis Gagnep in improving acute pharyngitis based on network pharmacology, animal experiments and quantitative real-time PCR.Methods The active components and targets of Sophora tonkinensis Gagnep were collected from the database of traditional Chinese medicinal systems databases and analysis platform(TCMSP). Targets related to acute pharyngitis were acquired through GeneCards, OMIM, DrugBank and Disgenet databases. After the common targets of the two were screened, the STRING database was used to construct the protein interaction network, and the Metascape platform was used for pathway analysis. At the same time, Cytoscape software was used to construct a network of "herbal-disease-component-target" and "herbal-disease-component-target-pathway" network. The acute pharyngitis models in rats were established to study the effect of water extract of Sophora tonkinensis Gagnep on acute pharyngitis in rats. Quantitative real-time PCR technology was used to study the effect of Sophora tonkinensis Gagnep on key gene targets in key pathways of pharyngeal tissues in rats with acute pharyngitis. Results In this experiment, 509 related targets of 21 active components of Sophora tonkinensis Gagnep were obtained, 2 167 related targets of acute pharyngitis were obtained, and 194 common targets of Sophora tonkinensis Gagnep and acute pharyngitis were obtained. KEGG pathway analysis screened 344 related signaling pathways, indicating that IL-17 signaling pathway, NF-kappa B signaling pathway and leukocyte transendothelial migration pathway might play a key role in the improvement of acute pharyngitis by Sophorae tonkinensis Gagnep. Animal experiments showed that the low dose group of Sophora tonkinensis Gagnep water extract had better therapeutic effect on acute pharyngitis. The results of quantitative real-time PCR showed that the low-dose group of Sophora tonkinensis Gagnep significantly down-regulated the expression levels of ITGB2, PIK3CA, PIK3CD and PTPN11 genes in leukocyte transendothelial migration pathway(P<0.05). Conclusions The above results show that Sophora tonkinensis Gagnep has the characteristics of multi-component, multi-target and multi-pathway synergy in improving acute pharyngitis, which provides a theoretical basis for further study on the complex mechanism of Sophora tonkinensis Gagnep in improving acute pharyngitis.

12.
Journal of Pharmaceutical Practice ; (6): 76-78, 2022.
Artículo en Chino | WPRIM | ID: wpr-907160

RESUMEN

Objective To establish the quality standard of compound Yuhong suppository. Methods Angelica dahurica, colophony and Sophora flavescens Alt. were identified by thin layer chromatography(TLC)method. The contents of sulfadiazine and dyclonine hydrochloride were determined by HPLC with diode array detection method. The mobile phase was methanol-0.02 mol/L potassium dihydrogen phosphate (adjusted to pH 3.3 with phosphoric acid) for gradient elution. The detection wavelength was 280 nm for sulfadiazine and dyclonine hydrochloride. Results The three Chinese traditional medicines were identified by TLC with clear spots. The linear ranges of sulfadiazine and dyclonine hydrochloride were good in 12.40-99.20 μg/ml (r=0.999 9) and 2.56-20.48 μg/ml (r=0.999 9). The average recovery was (99.21±0.43) % (n=9) and (99.54±0.68) % (n=9). Conclusion This method is accurate, sensitive, and reproducible. It can be used as a standard method for the quality control of compound Yuhong suppository.

13.
Journal of Pharmaceutical Practice ; (6): 1-5, 2022.
Artículo en Chino | WPRIM | ID: wpr-907146

RESUMEN

Sophora alopecuroides, a plant of the family Leguminosae, is one of the Daodi herbs in Ningxia. The active constituents of Sophora alopecuroides are abundant and complex, including alkaloids, flavonoids, volatile oils, steroids, polysaccharides, fatty acids and so on. In recent decades, a great number of domestic and overseas studies have been carried out on Sophora alopecuroides alkaloids, which have anti-hepatitis, anti-liver fibrosis, anti-cirrhosis, anti-liver failure and anti-liver cancer and other pharmacological effects. Clinically, Matrine-related drugs are used to treat hepatitis B virus infection and other diseases. This review aims to summarize the main active ingredients of Sophora alopecuroides, mainly focusing on the research progress in their treatment activities for liver diseases.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 183-191, 2022.
Artículo en Chino | WPRIM | ID: wpr-940708

RESUMEN

ObjectiveTo conduct phylogenetic analysis of internal transcribed spacer 2 (ITS2) and chloroplast gene segments including psbA-trnH, rbcL, and matK of Sophora japonica cv. jinhuai resource samples from different geographical sources, and to explore the genetic diversity of S. japonica cv. jinhuai. MethodPolymerase chain reaction (PCR) method was used to amplify the nucleic acid sequences of ITS2, psbA-trnH, rbcL, and matK of S. japonica cv. jinhuai. Neighbor joining (NJ) method was used to construct phylogenetic trees, and Kimura 2-Parameter (K2P) model was used to calculate the genetic distance of different samples. MEGA and BIOEDIT softwares were applied for mutiple alignment and analysis of ITS2, psbA-trnH, rbcL, and matK sequences of S. japonica cv. jinhuai. ResultThe lengths of ITS2 sequence were 278-279 bp. The lengths of psbA-trnH were 289 bp. The lengths of rbcL sequence were 673 bp. The lengths of matK sequences were 786-792 bp. There were 3 mutation points in ITS2 and psbA-trnH, no mutation point in rbcL, and 13 mutation points in matK. The samples of S. japonica cv. jinhuai were clustered into two groups based on the phylogenetic tree constructed by ITS2 sequences. The sample of seedling tree in Baibao was clustered into one group, while the other 25 samples were clustered into another group. For the psbA-trnH sequence, the success rate of PCR amplification of 28 samples of S. japonica cv. jinhuai was 100%. The 28 samples of S. japonica cv. jinhuai were clustered into three groups based on the clustering results of psbA-trnH sequence. The sample of seedling tree in Shaoshui was clustered into one group. The five samples of grafting tree and seedling tree in Miaotou, grafting trees in Jiantang, Wenqiao, and Daxu, and seeding tree in Xianshui were clustered into one group. The other 21 samples were clustered into another group. The 26 samples of S. japonica cv. jinhuai were clustered into two groups based on the phylogenetic tree constructed by matK sequences. The sample of seedling tree in Xianshui was clustered into one group, while the other 25 samples were clustered into another group. The clustering results of the rbcL sequence of S. japonica cv. jinhuai could not distinguish 28 resource samples. The phylogenetic tree constructed by the combined sequence of ITS2+psbA-trnH+rbcL+matK divided S. japonica cv. jinhuai resource samples into 4 groups. The 13 samples of seedling trees in Qiyang, Daoxian, Miaotou, Shaoshui, Shitang, Xianshui, Jiantang, and Xiangli, and grafting trees in Qiyang, Miaotou, Yongsui, Wenqiao, and Yangtang were clustered into one group. The sample of seedling tree in Wenqiao was clustered into one group. The sample of seedling tree in Daxu was clustered into one group. The remaining samples were clustered into another group. ConclusionPhylogenetic and mutation analysis provide the theoretic foundation to investigate the evolution of the resources of S. japonica cv. jinhuai, and evaluate their genuineness. The results of mutation points can be used to identify the related S. japonica cv. jinhuai resources. The findings of this study show that the combination of different gene sequences has an optimal effect on plant identification.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 165-172, 2022.
Artículo en Chino | WPRIM | ID: wpr-940301

RESUMEN

ObjectiveTo study the chemical constituents of the seeds of Sophora tonkinensis. MethodThe chemical constituents were isolated and purified by chromatography with MCI resin, silica gel, Sephadex LH-20, and semi-preparative high performance liquid chromatography. Their structures were identified by physicochemical properties, spectral data as well as relevant references. Meanwhile, the antibacterial activities against Helicobacter pylori of these compounds were screened by agar dilution method. ResultA total of 22 compounds were isolated from the methanol extract of the seeds of S. tonkinensis, and characterized as 4′,7-dihydroxy-6-methoxy isoflavone (1), daidzein (2), wighteone (3), dalparvone (4), 5,7-dihydroxy-4′-methoxyisoflavone (5), prunetin (6), formononetin (7), genistein (8), 5-methoxydaidzein (9), ononin (10), 7,4′-dihydroxyflavone (11), liquiritigenin (12), bayin (13), 2,4-dihydroxybenzoate (14), methyparaben (15), 4-hydroxyacetophenone (16), p-anisaldehyde (17), methyl indole-3-carboxylate (18), 4-[β-D-apiofuranoyl-(1→6)-O-β-D-glucopyranosyloxy] phenylacetonitrile (19), (-)-methyl dihydrophaseate (20), methyl canavaliol ester (21), vomifoliol 3′-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (22). ConclusionCompounds 1, 5, 6, 9 and 16 are isolated from S. tonkinensis for the first time, compounds 4, 14, 17-22 are isolated from the genus of Sophora for the first time. In addition, compounds 10 and 13 display moderate antibacterial activities against H. pylori.

16.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 899-907, 2022.
Artículo en Chino | WPRIM | ID: wpr-1014803

RESUMEN

Isopentenyl flavonoids are a class of characteristic components in Sophora flavescens Ait. (S. flavescens). They have biological activities such as anti-tumor, anti-bacteria, anti-inflammol/ Lation and anti-oxidation. In this paper, the structural types, toxicology and pharmacological effects of isopentenyl flavonoids from S. flavescens were briefly reviewed. Furthermore, the worth of further study on pharmacokinetics, pharmacodynamics, toxicology, action targets, molecular mechanisms and structure-function relationships of isopentenyl flavonoids were proposed. The deep exploration on functional characterastics of isopentenyl flavonoids of S. flavescens and their application on development of innovative drugs are of great significance to further improve the added value of isopentenyl flavonoids and expand their application fields.

17.
China Journal of Chinese Materia Medica ; (24): 2889-2899, 2021.
Artículo en Chino | WPRIM | ID: wpr-888058

RESUMEN

Sophorae Flavescentis Radix,derived from the root of Sophora flavescens in the Leguminosae family,has been widely used in the medicine,agriculture,animal husbandry,and daily chemical industry. A pharmacophore model-based method for rapid discovery of tyrosinase inhibitors( TIs) from S. flavescens was established by molecular docking under Lipinski rules,and verified by enzyme assays. Briefly,the chemical constituent database of S. flavescens( CDSF) was established based on the previous papers. Theoptimal pharmacophore model( OPM) was constructed by DS 2019 on the basis of known active TIs. Eighty-three hits predominated by flavonoids having higher fitting scores with OPM than the positive control were screened out,and subjected to molecular docking based on the three-dimensional structure of tyrosinase crystal protein. The potential TIs such as kurarinone and nor-kurarinone were rapidly discovered from the compounds with higher docking scores than the positive control under the Lipinski rules. The results were verified by the in vitro enzyme assays. The inhibition activities of tyrosinase from non-medicinal parts of S. flavescens were also tested to explore the relationship between the inhibition activity and chemical compositions. This study is expected to provide data support for the comprehensive application and development of S. flavescens and also a new method for the rapid discovery of active substances or functional constituents in the complex systems.


Asunto(s)
Animales , Flavonoides , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Extractos Vegetales/farmacología , Raíces de Plantas , Sophora
18.
Mongolian Pharmacy and Pharmacology ; : 76-82, 2021.
Artículo en Inglés | WPRIM | ID: wpr-974958

RESUMEN

Introduction@#<i>Sophora alopecuroides L</i> has broadly been utilized in traditional medicine and all crude drugs including root, herb, and seed are used to treat numerous diseases. This herb is included in 181 Tibetan-Mongolian medicinal prescriptions and ranks 8<sup>th</sup> among Mongolian medicinal plants in terms of frequency of administration. The <i>S.alopecuroidesL . </i> root standard was developed by the Institute of Traditional Medicine and Technology in 2017 and approved by “ҮФӨ-0307-2017”. Herb and seed are still used in medicine. Therefore, their standard parameters need to be determined and verified.@*Materials and methods@#The quantitative pharmacognosy analysis of herb and seed was carried out in accordance with the methodology specified in the “General requirements for medicinal plant raw materials” of the National Pharmacopoeia of Mongolia. To determine the total alkaloid in standard matrine, a bromcresol green complex was formed, which was measured by spectrophotometer.@*Conclusion@#By developing, standards for the crude drugs of herb and seed of <i>S.alopecuroides L. </i> which are included in numerous medicinal prescriptions, will confirm the rationale for the use of medicinal raw materials and to expand the utilization’s possibilities.

19.
Mongolian Medical Sciences ; : 64-69, 2021.
Artículo en Inglés | WPRIM | ID: wpr-974459

RESUMEN

Introduction @#The roots of Sophora Flavescentis is one of the key ingredient in Norbu 7 traditional medicine, the bioactive compound being quinolizidine alkaloids, matrine and oxymatrine. A high performance liquid chromatography (HPLC) method was used to determine matrine, oxymatrine simultaneously in the traditional medicine. The HPLC method was tested and validated for selective determination of matrine and oxymatrine in the Norbu 7 granule. The proposed method was validated for linearity, precision (system precision, method precision, intermediate or inter- day precision) and accuracy, stability in analytical solution, system suitability and ruggedness.@*Goal@#The goal of this study was to develop validated determination method of alkaloid in Norbu 7 granule for quality control.@*Material and Method@#HPLC analysis was performed on Chromecore amino bonded silica gel as the stationary phase (250 mm : 4.6 mm i.d., 5µm) using mixture of acetonitrile, dehydrated ethanol and 3% phosphoric acid (80:10:10) as the mobile phase, 220 nm as the UV light detection. </br> The research methodology was approved by Research Ethic Review Committee of Mongolian University of Pharmaceutical Science on 16th of November, 2020. @*Results@#The calibration curve of oxymatrine showed good linearity (R2=0.9955) within the established range of 8 – 64 µg/ml. The limit of detection (LOD) and quantification (LOQ) were 10.13 µg/ml and 30.71 µg/ ml respectively. Good results were achieved with repeatability (%RSD < 2.0) and recovery (93.08 – 104.32%).@*Conclusion@#The method was found to be selective, accurate, reproducible and the other components did not interfere with determinations. It was successfully used to analyze the granule traditional medicine with 7 different plant formulation and additives. The HPLC method can be used to evaluate and control quality, stability of Norbu 7 granules.

20.
China Journal of Chinese Materia Medica ; (24): 6410-6416, 2021.
Artículo en Chino | WPRIM | ID: wpr-921800

RESUMEN

This study was designed to investigate the flavor and taste change rules of Sophora Flavescentis Radix processed using the ancient classical method documented in Master Lei's Discourse on Medicinal Processing(Lei Gong Pao Zhi Lun). The Sophora Flavescentis Radix pieces and the corresponding test samples in each processing stage were first prepared based on the processing method for Sophora Flavescentis Radix recorded in Master Lei's Discourse on Medicinal Processing(Lei Gong Pao Zhi Lun). Then the flavors and tastes of Sophora Flavescentis Radix test samples undergoing the soaking in rice-washed water, washing with clean water, and steaming for different time were compared with the electronic nose and tongue. The results showed that in the preparation of Sophora Flavescentis Radix with the ancient method, such processes as soaking in rice-washed water and washing with clean water had no significant influences on the flavor, which, however, was weakened by steaming. In terms of the taste, soaking with rice-washed water enhanced the bitter taste of Sophora Flavescentis Radix, which remained unchanged after being washed with the clean water. The steaming would also diminish the bitter taste, making it taste similar to the original Sophora Flavescentis Radix medicinal materials. During the steaming for six to eight hours, the flavor did not vary significantly over time, while the bitter taste was first weakened and then intensified. The bitter taste of Sophora Flavescentis Radix steamed for six hours was similar to that steamed for eight hours. In addition, the differences in flavor and taste between Sophora Flavescentis Radix pieces processed by the ancient method in Master Lei's Discourse on Medicinal Processing(Lei Gong Pao Zhi Lun)and those by the modern method in the 2020 edition of Chinese Pharmacopoeia were analyzed. The findings demonstrated that the flavor of Sophora Flavescentis Radix pieces prepared by the ancient method was weaker than that by the modern method, whereas the bitter taste showed the opposite trend. The exploration on the flavor and taste change rules of Sophora Flavescentis Radix in its preparation by the ancient classical method and the differences in flavor and taste between Sophora Flavescentis Radix decoction pieces prepared by ancient and modern methods will lay a foundation for further elucidation of the scientific connotation of the ancient processing method and the medication principles of Sophora Flavescentis Radix in both ancient and modern times.


Asunto(s)
Medicamentos Herbarios Chinos , Nariz Electrónica , Raíces de Plantas , Sophora , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA