Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
International Journal of Traditional Chinese Medicine ; (6): 568-573, 2023.
Artículo en Chino | WPRIM | ID: wpr-989677

RESUMEN

Objective:To study the effects of Terra Flavausta on diarrhea mice with spleen yang deficiency based on metabonomics. Methods:Totally 30 mice were divided into normal group, model group and Terra Flavausta group according to random number table method. Mice in the model group and Terra Flavausta group were treated by the method of "diet disorder + clearing fire with herbs bitter in flavour and cold in property" to establish the diarrhea model of spleen yang deficiency. After successful modeling, Terra Flavausta group received Zaoxintu Decoction 12.0 g/kg for gavage, while normal group and model group were given equal volume of distilled water for gavage, for consecutive 7 d. The serum metabolites of each mouse were analyzed and identified based on UPLC-Q-Exective-MS. The differential metabolites were characterized by principal component analysis and orthogonal partial least squares discriminant analysis, and the potential biomakers were screened, and the KEGG pathway enrichment analysis was performed. Results:Totally 110 different metabolites were screened under the positive and negative ion mode. Terra Flavausta can effectively reverse the disorder of serum metabolism in diarrhea mice with spleen yang deficiency, and has a significant callback effect on 12 potential biomarkers related to diarrhea with spleen yang deficiency. KEGG pathway enrichment mainly involved HIF-1 signaling pathway, ascorbate and aldarate metabolism, platelet activation, etc. Conclusion:Terra Flavausta may play the effect of warming spleen and relieving diarrhea through down-regulation of L-ascorbic acid affecting HIF-1 signal pathway, ascorbic acid and aldose metabolism pathway, vitamin digestion and absorption pathway, up-regulation of prostaglandins G2 and H2 affecting platelet activation pathway, and down-regulation of jasmonic acid α linolenic acid metabolic pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA