RESUMEN
【Objective】 To establish a high-throughput detection method for ABCG2*376T allele of Jr(a-), and apply it to the study of the frequency of this allele in the Chinese population. 【Methods】 The specific primers were designed and synthesized, the sample carrying homozygous ABCG2*376T alleles, obtained in the previous study, was used as the homozygous positive control, and the sample carrying heterozygous allele as the heterozygous positive control. The wild-type sample was used as a negative control, and a high-resolution melting curve(HRM) method for detecting this allele was established. The established method was used to screen DNA samples from blood donors in Guangzhou, and the samples carrying ABCG2*376T alleles were sequenced to confirm the accuracy of the HRM method. 【Results】 A HRM method, which can detect ABCG2*376T allele and accurately type homozygotes and heterozygotes at the same time, had been established successfully. Fifteen individuals with heterozygous alleles were screened out of 1 560 blood donors in Guangzhou, while none homozygous allele was detected. 【Conclusion】 The HRM method can be used to accurately screen and type ABCG2*376T allele. The frequency of this allele in Chinese population is about 0.48%(15/3120).
RESUMEN
Background & objectives: The impact of several environmental and genetic factors on diabetes is well documented. Though the association between the vitamin D receptor (VDR) gene polymorphisms and type 2 diabetes mellitus (T2DM) has been analyzed in different ethnic groups, the results have been inconsistent. The aim of this study was to evaluate the possible association between VDR FokI polymorphism and genetic susceptibility to T2DM in Tunisian population. Methods: A total of 439 unrelated patients with T2DM and 302 healthy controls were included in the study. Genomic DNA was extracted from blood and genotyped for the single nucleotide polymorphism (SNP) of FokI (T/C: (rs2228570) by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis. Results: The genotype distribution and the relative allelic frequencies for the FokI polymorphism were not significantly different between T2DM and controls: in T2DM patients the frequencies of the CC, CT, and TT genotypes were 52.6, 41.0, and 6.1 per cent, respectively, and in controls the genotype frequencies were 55.6, 38.7, and 5.6 per cent, respectively. In our study, the TT genotype of the FokI polymorphism was not associated with T2DM (OR =1.19, 95% CI 0.63 - 2.25, P=0.577). Interpretation & conclusions: Our study showed no significant association of the FokI polymorphism in the vitamin D receptor gene with type 2 diabetes mellitus in Tunisian population.
RESUMEN
BACKGROUND AND AIM: The multi-drug resistant-1 (MDR-1) gene is located on human chromosome 7 and encodes a glycosylated membrane protein that is a member of the ATP-binding cassette transporters superfamily. The aim of the study was to reveal the role of the C3435T MDR-1 gene polymorphism in chronic obstructive pulmonary disease. METHOD: DNA samples from 41 patients with chronic obstructive pulmonary disease and 50 healthy control participants were used to compare MDR-1 gene profiles. Genotyping assays were performed using the StripAssay technique that is based on reverse-hybridization. RESULTS: The T allele polymorphism in the MDR-1 gene located at position 3435 in exon 26 was shown to correlate with chronic obstructive pulmonary disease. CONCLUSION: These preliminary results suggest that the T allele polymorphism of the MDR-1 gene is associated with chronic obstructive pulmonary disease.