Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Acta Pharmaceutica Sinica B ; (6): 390-400, 2018.
Artículo en Inglés | WPRIM | ID: wpr-690900

RESUMEN

Necrosis is a form of cell death, which is related to various serious diseases such as cardiovascular disease, cancer, and neurodegeneration. Necrosis-avid agents (NAAs) selectively accumulated in the necrotic tissues can be used for imaging and/or therapy of related diseases. The aim of this study was to preliminarily investigate necrosis avidity of I-evans blue (I-EB) and its mechanism. The biodistribution of I-EB at 24 h after intravenous administration showed that the radioactivity ratio of necrotic to viable tissue was 3.41 in the liver and 11.82 in the muscle as determined by counting in model rats. Autoradiography and histological staining displayed preferential uptake of I-EB in necrotic tissues. nuclear extracts from necrotic cells exhibited 82.3% of the uptake in nuclei at 15 min, as well as 79.2% of the uptake at 2 h after I-EB incubation. The DNA binding study demonstrated that evans blue (EB) has strong binding affinity with calf-thymus DNA (CT-DNA) (=5.08×10 L/(mol/L)). Furthermore, the accumulation of I-EB in necrotic muscle was efficiently blocked by an excess amount of unlabeled EB. In conclusion, I-EB can not only detect necrosis by binding the DNA released from necrotic cells, but also image necrotic tissues generated from the disease clinically.

2.
Artículo | IMSEAR | ID: sea-186068

RESUMEN

Head trauma can have immediate transient symptoms, or lead to chronic signs and symptoms. The apparent seriousness of head injury can be misleading. Minor trauma can result in serious problems. In treating traumatic brain injury, viewing images of the brain, particularly injured areas, is crucial for planning treatment. Images of the brain may be obtained through computed tomography (CT) or MRI. These techniques permit imaging of the brain for both diagnosis of injury and choosing therapeutic interventions. Method Fifty patients presented with head injury referred for CT scan and MRI of all the age group were included in the study. Nonenhanced CT scan of brain was performed on a dual slice (multislice) high speed GE machine. A slice thickness of 5 mm was used in all studies. MRI scan of brain was performed on a general electrical permanent 0.2 TESLA Signa Profile-i SR42 machine. Results Most of the patients (52%) were between the age group of 19 and 49 years. Subarachnoid haemorrhage, cranial fractures, cerebral contusion, and diffuse axonal injury were common head injuries. Subdural hematoma was seeen in all cases in FLAIR sequences. Sensitivity of T2WI was less as compared to T1WI and FLAIR sequences. FLAIR is more sensitive than CT in detecting subdural hematoma. FLAIR sequence picked up all subarachnoid haemorrhage cases followed by GRE and T1WI. T2 is not a routine sequence in detecting subarachnoid haemorrhage. MR (FLAIR) is more useful than CT in detecting subarachnoid haemorrhage. Temporal lobe was common site for contusions followed by frontal, parietal, and occipital lobe. Grey-white matter junction was the most common site followed by corpus callosum. MRI is more sensitive than CT in detecting nonhaemorrhagic contusions. FLAIR, T2WI are more sensitive than T1WI and CT in detecting nonhaemorrhagic contusions. Posterior cerebral artery territory infarcts were common. Encephalomalacia and gliosis are more common in frontal lobe followed by temporal lobe. Conclusion FLAIR sequence picked up subarachnoid haemorrhage in all cases followed by GRE and T1WI. MRI was more sensitive in detecting contusions than CT. Grey-white matter junction was the most common site of diffuse axonal injury followed by corpus callosum. Nonhaemorrhagic DAI were common. MRI is more sensitive than CT in detecting haemorrhagic and nonhaemorrhagic DAI. FLAIR, T2WI are more sensitive than T1WI and CT in detecting nonhaemorrhagic contusions. GRE and FLAIR are more sensitive than T1WI and CT in detecting brainstem injuries.

3.
Journal of Korean Neurosurgical Society ; : 39-42, 2007.
Artículo en Inglés | WPRIM | ID: wpr-214504

RESUMEN

Primary intracranial melanoma is uncommon. These tumors most commonly occur at the temporal lobe, cerebellum and cerebellopontine angle. We report a case of intracranial malignant melanoma of the occipital lobe in a 60-year-old man who presented with headache and visual disturbance. The mass showed hyperintensity on T1-weighted images and hypointensity on T2-weighted magnetic resonance images. He underwent gross total removal of tumor and received radiotherapy. Followup imaging studies showed neither recurrence nor any signs of residual disease for 4 months.


Asunto(s)
Humanos , Persona de Mediana Edad , Ángulo Pontocerebeloso , Cerebelo , Estudios de Seguimiento , Cefalea , Melanoma , Lóbulo Occipital , Radioterapia , Recurrencia , Lóbulo Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA