Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Environmental and Occupational Medicine ; (12): 196-201, 2023.
Artículo en Chino | WPRIM | ID: wpr-964933

RESUMEN

Background Lead is widely distributed. Lead exposure interferes with early life development in zebrafish, but the mechanisms by which lead exposure affects skeletal development and cardiac development are not clear as yet. Objective To investigate the molecular mechanisms of bone development and cardiac development toxicity induced by lead acetate exposure. Methods Zebrafish embryos were exposed to different concentrations of lead acetate (0, 6, 12, 24, and 48 μmol·L−1) for 3 h post-fertilization (3 hpf) until 5 d post-fertilization (5 dpf). The malformation phenotypes of 5 dpf were counted, and the mRNA expressions of spinal development-related genes (bmp2b, bmp4, bmp9, runx2a, runx2b) and heart development-related genes (nkx2.5, myh6, myh7) were detected by quantitative PCR (qPCR). Expressions of genes of development-related regulatory pathways including Wnt/β-catenin pathway (wnt5a, wnt8a, wnt10a, β-catenin) and TGF-β pathway (tgf-β1, tgf-β2) as well as key molecule eph of Eph-Ephrin signaling were analyzed. Results At 5 dpf, the zebrafish in the lead acetate treated groups showed deformed phenotypes including spinal curvature and pericardial sac edema compared to the control group. In the lead acetate groups at 24 and 48 μmol·L−1, the spinal curvature deformity rates reached 26.47% and 71.52% (P<0.01) respectively. The qPCR results revealed that the expression levels of spinal development-related genes bmp2b, bmp4, bmp9, runx2a, and runx2b were downregulated in the 48 μmol·L−1 exposure group compared to the control group by 82.8%, 58.0%, 88.7%, 85.5%, and 69.2%, respectively (P<0.05 or P<0.01); the expression levels of heart development-related genes myh6, myh7, and nkx2.5 were down-regulated by 63.7%, 58.9%, and 55.2%, respectively (P<0.01); the expression levels of wnt8a and β-catenin in the Wnt/β-catenin pathway were down-regulated by 71.5% and 47.3% (P < 0.05 or P < 0.01), respectively; the expression level of tgf- β1 in the TGF-β pathway was down-regulated by 67.5% (P<0.01); the expression level of eph was down-regulated by 86.9% (P<0.01). Conclusion Lead acetate exerts developmental toxic effects on zebrafish heart and bone by down-regulating the expressions of genes related to spinal development and heart development, as well as inhibiting development-related Wnt/β-catenin and TGF-β pathways and Eph-Ephrin signaling, causing malformed phenotypes such as spinal curvature and pericardial sac edema.

2.
Chinese Traditional and Herbal Drugs ; (24): 3700-3706, 2019.
Artículo en Chino | WPRIM | ID: wpr-850966

RESUMEN

Asthma is a chronic airway inflammation caused by a variety of factors, involving a variety of cells and cellular components, which is often accompanied by airway hyperresponsiveness and airway remodeling. At present, asthma has become a common chronic respiratory disease. There exists close relationship between the asthma and signaling pathways. MAPK, PI3K/Akt, NF-κB, TGF-β, Notch and Wnt pathways related to the asthma were extensively studied currently. Traditional Chinese medicine shows advantages in the treatment of chronic diseases such as asthma. In order to explain the advantages of traditional Chinese medicine in the treatment of asthma and develop new asthma drugs originated from traditional Chinese medicine, the role of traditional Chinese medicine in the intervention of related signaling pathways of asthma was reviewed. In addition, the relationship between signaling pathway and pathogenesis (airway inflammation, airway hyperresponsive, and airway remodeling) were also discussed.

3.
Biomolecules & Therapeutics ; : 623-629, 2016.
Artículo en Inglés | WPRIM | ID: wpr-209970

RESUMEN

(1S,2S,3E,7E,11E)-3,7,11,15-cembratetraen-17,2-olide (LS-1), a marine cembrenolide diterpene, has anticancer activity against colon cancer cells such as HT-29, SNU-C5/5-FU (fluorouracil-resistant SNU-C5) and SNU-C5. However, the action mechanism of LS-1 on SNU-C5 human colon cancer cells has not been fully elucidated. In this study, we investigated whether the anticancer effect of LS-1 could result from apoptosis via the modulation of Wnt/β-catenin and the TGF-β pathways. When treated with the LS-1, we could observe the apoptotic characteristics such as apoptotic bodies and the increase of sub-G1 hypodiploid cell population, increase of Bax level, decrease of Bcl-2 expression, cleavage of procaspase-3 and cleavage of poly (ADP-ribose) polymerase in SNU-C5 cells. Furthermore, the apoptosis induction of SNU-C5 cells upon LS-1 treatment was also accompanied by the down-regulation of Wnt/β-catenin signaling pathway via the decrease of GSK-3β phosphorylation followed by the decrease of β-catenin level. In addition, the LS-1 induced the activation of TGF-β signaling pathway with the decrease of carcinoembryonic antigen which leads to decrease of c-Myc, an oncoprotein. These data suggest that the LS-1 could induce the apoptosis via the down-regulation of Wnt/β-catenin pathway and the activation of TGF-β pathway in SNU-C5 human colon cancer cells. The results support that the LS-1 might have potential for the treatment of human colon cancer.


Asunto(s)
Humanos , Apoptosis , Antígeno Carcinoembrionario , Caspasa 3 , Neoplasias del Colon , Neoplasias Colorrectales , Regulación hacia Abajo , Vesículas Extracelulares , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA