Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Neuroscience Bulletin ; (6): 242-254, 2021.
Artículo en Chino | WPRIM | ID: wpr-952017

RESUMEN

Traumatic brain injury (TBI) triggers the activation of the endogenous coagulation mechanism, and a large amount of thrombin is released to curb uncontrollable bleeding through thrombin receptors, also known as protease-activated receptors (PARs). However, thrombin is one of the most critical factors in secondary brain injury. Thus, the PARs may be effective targets against hemorrhagic brain injury. Since the PAR1 antagonist has an increased bleeding risk in clinical practice, PAR4 blockade has been suggested as a more promising treatment. Here, we explored the expression pattern of PAR4 in the brain of mice after TBI, and explored the effect and possible mechanism of BMS-986120 (BMS), a novel selective and reversible PAR4 antagonist on secondary brain injury. Treatment with BMS protected against TBI in mice. mRNA-seq analysis, Western blot, and qRT-PCR verification in vitro showed that BMS significantly inhibited thrombin-induced inflammation in astrocytes, and suggested that the Tab2/ERK/NF-κB signaling pathway plays a key role in this process. Our findings provide reliable evidence that blocking PAR4 is a safe and effective intervention for TBI, and suggest that BMS has a potential clinical application in the management of TBI.

2.
Journal of Zhejiang University. Science. B ; (12): 590-598, 2021.
Artículo en Inglés | WPRIM | ID: wpr-888688

RESUMEN

Although microRNA-155 (miR-155) is considered a pro-inflammatory mediator, cumulative evidence indicates that it also has anti-inflammatory effects in macrophages and dendritic cells. In this study, we identified the dramatic expression changes of more than half of potential miR-155-targeted genes upon lipopolysaccharide (LPS) stimulation; 223 genes were down-regulated and 85 genes were up-regulated, including suppressor of cytokine signaling 1 (

3.
Allergy, Asthma & Immunology Research ; : 260-267, 2018.
Artículo en Inglés | WPRIM | ID: wpr-714720

RESUMEN

PURPOSE: Molecular mechanisms leading to asthma is still ill-defined. Though the function of microRNAs (miRNAs) in asthma was previously reported, the involvement of miR-155 in important features of this disease remains unknown. The present study was designed to uncover the probable involvement of miR-155-5p in the proliferation and migration of IL-13-induced human bronchial smooth muscle cells (BSMCs) and the intrinsic regulatory mechanism. METHODS: The effects of different concentrations of IL-13 on the proliferation and migration of BSMCs as well as the expression of miR-155-5p and its predicted target transforming growth factor (TGF)-β-activated kinase 1/MAP3K7-binding protein 2 (TAB2) were investigated. The effects of miR-155-5p on the proliferation and migration of interleukin (IL)-13-induced BSMCs was determined in vitro using BSMCs transfected with miR-155 mimic/inhibitor and induced by a high concentration of IL-13. The quantitative real-time polymerase chain reaction (qRTPCR) was employed for determining the expression of miR-155-5p and TAB2. Western blotting was applied to analyze the expression of TAB2 at the protein level. Cell proliferation and migration were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell assays, respectively. RESULTS: The proliferation and migration of BSMCs were dose-dependently increased with IL-13 treatment. Contrariwise, IL-13 dose-dependently inhibited the expression of miR-155-5p in BSMCs. Mechanistic studies showed that inhibition of miR-155-5p further promoted the stimulatory effects of IL-13, whereas overexpression of miR-155 significantly inhibited these effects. In silico studies and luciferase reporter assays indicated that TAB2 was a negatively regulated miR-155-5p target. CONCLUSIONS: These results suggested that miR-155-5p-inhibit the IL-13-induced proliferation and migration of BSMCs by targeting TAB2 and that the IL-13/miR-155/TAB2 pathway could serve as a therapeutic target for pulmonary diseases, especially asthma.


Asunto(s)
Humanos , Asma , Western Blotting , Proliferación Celular , Simulación por Computador , Técnicas In Vitro , Interleucina-13 , Interleucinas , Luciferasas , Enfermedades Pulmonares , MicroARNs , Músculo Liso , Miocitos del Músculo Liso , Fosfotransferasas , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Crecimiento Transformadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA