Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of the Korean Association of Oral and Maxillofacial Surgeons ; : 59-65, 2018.
Artículo en Inglés | WPRIM | ID: wpr-714258

RESUMEN

OBJECTIVES: This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. MATERIALS AND METHODS: A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. RESULTS: The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. CONCLUSION: Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.


Asunto(s)
Vestuario , Implantes Dentales , Análisis de Elementos Finitos , Métodos
2.
The Journal of Korean Academy of Prosthodontics ; : 120-127, 2015.
Artículo en Coreano | WPRIM | ID: wpr-87266

RESUMEN

PURPOSE: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. MATERIALS AND METHODS: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body (4.1 mm x 10 mm), a force of 100 N was applied onto the top of implant abutment at 30degrees with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. RESULTS: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. CONCLUSION: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.


Asunto(s)
Vértebra Cervical Axis , Análisis de Elementos Finitos , Oseointegración
3.
The Journal of Advanced Prosthodontics ; : 19-25, 2009.
Artículo en Inglés | WPRIM | ID: wpr-111187

RESUMEN

STATEMENT OF PROBLEM: Primary stability at the time of implant placement is related to the level of primary bone contact. The level of bone contact with implant is affected by thread design, surgical procedure and bone quality, etc. PURPOSE: The aim of this study was to compare the initial stability of the various taper implants according to the thread designs, half of which were engaged to inferior cortical wall of type IV bone (Group 1) and the rest of which were not engaged to inferior cortical wall (Group 2) by measuring the implant stability quotient (ISQ) and the removal torque value (RTV). MATERIAL AND METHODS: In this study, 6 different implant fixtures with 10 mm length were installed. In order to simulate the sinus inferior wall of type IV bone, one side cortical bone of swine rib was removed. 6 different implants were installed in the same bone block following manufacturer's recommended procedures. Total 10 bone blocks were made for each group. The height of Group 1 bone block was 10 mm for engagement and that of group 2 was 13 mm. The initial stability was measured with ISQ value using Osstell mentor(R) and with removal torque using MGT50 torque gauge. RESULTS: In this study, we found the following results. 1. In Group 1 with fixtures engaged to the inferior cortical wall, there was no significant difference in RTV and ISQ value among the 6 types of implants. 2. In Group 2 with fixtures not engaged to the inferior cortical wall, there was significant difference in RTV and ISQ value among the 6 types of implants (P < .05). 3. There was significant difference in RTV and ISQ value according to whether fixtures were engaged to the inferior cortical wall or not (P < .05). 4. Under-drilling made RTV and ISQ value increase significantly in the NT implants which had lower RTV and ISQ value in Group 2 (P < .05). CONCLUSIONS: Without being engaged to the inferior cortical wall fixtures had initial stability affected by implant types. Also in poor quality bone, under-drilling improved initial stability.


Asunto(s)
Costillas , Porcinos , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA