Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Experimental Neurobiology ; : 206-212, 2017.
Artículo en Inglés | WPRIM | ID: wpr-22194

RESUMEN

About 5~12% of school-aged children suffer from the Attention-Deficit/Hyperactivity Disorder (ADHD). However, the core mechanism of ADHD remains unclear. G protein-coupled receptor kinase-interacting protein-1 (GIT1) has recently been reported to be associated with ADHD in human and the genetic deletion of GIT1 result in ADHD-like behaviors in mice. Mice lacking GIT1 shows a shift in neuronal excitation/inhibition (E/I) balance. However, the pricise mechanism for E/I imbalance and the role of neuron-glia interaction in GIT1 knockout (KO) mice have not been studied. Especially, a possible contribution of glial GABA and tonic inhibition mediated by astrocytic GABA release in the mouse model for ADHD remains unexplored. Therefore, we investigated the changes in the amount of GABA and degree of tonic inhibition in GIT1 KO mice. We observed a decreased glial GABA intensity in GIT1 KO mice compared to wild type (WT) mice and an attenuation of tonic current from cerebellar granule cells in GIT1 KO mice. Our study identifies the previously unknown mechanism of reduced astrocytic GABA and tonic inhibition in GIT1 lacking mice as a potential cause of hyperactivity disorder.


Asunto(s)
Animales , Niño , Humanos , Ratones , Astrocitos , Cerebelo , Ácido gamma-Aminobutírico , Neuroglía , Neuronas
2.
The Korean Journal of Physiology and Pharmacology ; : 399-405, 2010.
Artículo en Inglés | WPRIM | ID: wpr-728353

RESUMEN

Gamma-aminobutyric acid (GABA)-ergic inhibition is important in the function of the visual cortex. In a previous study, we reported a developmental increase in GABAA receptor-mediated inhibition in the rat visual cortex from 3 to 5 weeks of age. Because this developmental increase is crucial to the regulation of the induction of long-term synaptic plasticity, in the present study we investigated in detail the postnatal development of phasic and tonic inhibition. The amplitude of phasic inhibition evoked by electrical stimulation increased during development from 3 to 8 weeks of age, and the peak time and decay kinetics of inhibitory postsynaptic potential (IPSP) and current (IPSC) slowed progressively. Since the membrane time constant decreased during this period, passive membrane properties might not be involved in the kinetic changes of IPSP and IPSC. Tonic inhibition, another mode of GABAA receptor-mediated inhibition, also increased developmentally and reached a plateau at 5 weeks of age. These results indicate that the time course of the postnatal development of GABAergic inhibition matched well that of the functional maturation of the visual cortex. Thus, the present study provides significant insight into the roles of inhibitory development in the functional maturation of the visual cortical circuits.


Asunto(s)
Animales , Ratas , Estimulación Eléctrica , Ácido gamma-Aminobutírico , Potenciales Postsinápticos Inhibidores , Cinética , Membranas , Plásticos , Corteza Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA