Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Int. j. morphol ; 39(4): 1109-1115, ago. 2021. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1385433

RESUMEN

SUMMARY: Cellular microstructural changes due to ultrasound exposure are critical to understand and characterize in order to further the establishment of ultrasonics in cell and tissue engineering and medicine. In this study, neurite length, nuclear morphology, and cellular toxicity are assessed at varying intensities of 92 kHz ultrasound provided by a piezoceramic disk element and incident upon SH- SY5Y neurons in vitro. Findings suggest that stimulation increases neurite length up to 2.73 fold tested at α = 0.05 in an intensity dependent manner. Additionally, stimulation causes a statistically significant (α = 0.05) decrease in nuclear area and less elongated nuclei, by 1.78 fold and 1.38 fold respectively, also in an intensity dependent manner. For maximum transducer surface intensities ranging from 0 to 39.11 W/cm2, the toxicity of 92 kHz ultrasound is assessed and a nontoxic range is determined using Caspase-3 and Annexin V staining, in addition to Calcium imaging via Calcein-AM staining. Intensities of up to 1.6 W/cm2 are found to be nontoxic for the cells under the parameters used in this study.


RESUMEN: Los cambios micro estructurales celulares debidos a la exposición a los ultrasonidos son fundamentales para comprender y caracterizar el establecimiento de los ultrasonidos en la ingeniería y la medicina de células y tejidos. En este estudio, la longitud de las neuritas, la morfología nuclear y la toxicidad celular se evalúan a intensidades variables de ultrasonido de 92 kHz proporcionado por un elemento de disco piezocerámico e incidente sobre las neuronas SH-SY5Y in vitro. Los resultados sugieren que la estimulación aumenta la longitud de las neuritas hasta 2,73 veces probada a α = 0,05 de una manera dependiente de la intensidad. Además, la estimulación provoca una disminución estadísticamente significativa (α = 0,05) en el área nuclear y núcleos menos alargados, en 1,78 veces y 1,38 veces, respectivamente y también de una manera dependiente de la intensidad. Para intensidades máximas de la superficie del transductor que oscilan entre 0 y 39,11 W / cm2, se evaluó la toxicidad del ultrasonido de 92 kHz y se determinó un rango no tóxico mediante tinción con Caspasa-3 y Anexina V, además de imágenes de calcio mediante tinción con Calceína-AM. Se encontró que las intensidades de hasta 1.6 W / cm2 no son tóxicas para las células bajo los parámetros usados en este estudio.


Asunto(s)
Ultrasonido , Estimulación Eléctrica , Neuronas , Técnicas In Vitro , Biología Celular
2.
Rev. ing. bioméd ; 7(13): 57-67, ene.-jun. 2013. graf
Artículo en Inglés | LILACS | ID: lil-769134

RESUMEN

The study of the acoustic field generated by an ultrasonic transducer is fundamental to its construction and characterization, because it defines how it will behave before being built. It also defines whether it is feasible or not, for the application to which it was designed. It can also lead to modifications to the project so it behaves as expected. In this work, a software was implemented in MATLAB®, for computational simulation of acoustic fields generated by ultrasonic transducers of different configurations. Two models were used, Zemanek and Stepanishen. Transducers with focus and apodization and transmission medium with attenuation may also be simulated. For the simulation of Zemanek's model, the mathematical method of discretization was used. The Stepanishen's model used an analytical solution for the impulse response. The developed programs were aggregated into a computer package, named FSIM, and a graphic interface was created. The user can choose among some of the transducer configurations and simulation parameters already implemented. FSIM has a modular architecture and allows further simulation modules to be added. The simulations were validated comparing results to those previously published in classical papers from Zemanek, and from Lockwood and Willete, in addition to prior results from research studies conducted at the Biomedical Engineering Department of the School of Electrical and Computing Engineering at the Universidade Estadual de Campinas (UNICAMP).


El estudio del campo acústico generado por un transductor ultrasónico es fundamental para su construcción y caracterización, ya que define cómo se comportará antes de ser construido. También define si realmente es factible para la aplicación a la que fue diseñado, y también puede sugerir modificaciones al proyecto, para que se comporte como se espera. En este trabajo un software fue implementado en MATLAB®, para la simulación computacional de los campos acústicos generados por los transductores ultrasónicos de diferentes configuraciones. Dos modelos fueran usados, Zemanek y Stepanishen. Transductores con el enfoque y apodización y medios con atenuación también pueden ser simulados. Para la simulación del modelo de Zemanek, se utilizó el método matemático de discretización y para el modelo de Stepanishen, se empleó una solución analítica para la respuesta impulsiva. Los programas desarrollados fueron agregados en un paquete computacional, llamado FSIM, y una interfaz gráfica fue creada. El usuario puede elegir entre algunas configuraciones del transductor y parámetros de simulación ya implementados; FSIM tiene una arquitectura modular y permite que otros módulos de simulación sean añadidos. Las simulaciones fueron validadas comparando resultados obtenidos previamente por otros trabajos de investigación del Departamento de Ingeniería Biomédica de la Facultad de Ingeniería Eléctrica y Computación de la UNICAMP y por los artículos clásicos de Zemanek y Lockwood y Willette.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA