Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Journal of Southern Medical University ; (12): 585-589, 2023.
Artículo en Chino | WPRIM | ID: wpr-986965

RESUMEN

OBJECTIVE@#Bo investigate the regulatory relationship between NKD1 and YWHAE and the mechanism of NKD1 for promoting tumor cell proliferation.@*METHODS@#HCT116 cells transfected with pcDNA3.0-NKD1 plasmid, SW620 cells transfected with NKD1 siRNA, HCT116 cells with stable NKD1 overexpression (HCT116-NKD1 cells), SW620 cells with nkd1knockout (SW620-nkd1-/- cells), and SW620-nkd1-/- cells transfected with pcDNA3.0-YWHAE plasmid were examined for changes in mRNA and protein expression levels of YWHAE using qRT-PCR and Western blotting. Chromatin immunoprecipitation (ChIP) assay was used to detect the binding of NKD1 to the promoter region of YWHAE gene. The regulatory effect of NKD1 on YWHAE gene promoter activity was analyzed by dual-luciferase reporter gene assay, and the interaction between NKD1 and YWHAE was analyzed with immunofluorescence assay. The regulatory effect of NKD1 on glucose uptake was examined in the tumor cells.@*RESULTS@#In HCT116 cells, overexpression of NKD1 significantly enhanced the expression of YWHAE at both the mRNA and protein levels, while NKD1 knockout decreased its expression in SW620 cells (P < 0.001). ChIP assay showed that NKD1 protein was capable of binding to the YWHAE promoter sequence; dual luciferase reporter gene assay showed that NKD1 overexpression (or knockdown) in the colon cancer cells significantly enhanced (or reduced) the transcriptional activity of YWHAE promoter (P < 0.05). Immunofluorescence assay demonstrated the binding of NKD1 and YWHAE proteins in colon cancer cells. NKD1 knockout significantly reduced glucose uptake in colon cancer cells (P < 0.01), while YWHAE overexpression restored the glucose uptake in NKD1-knockout cells (P < 0.05).@*CONCLUSION@#NKD1 protein activates the transcriptional activity of YWHAE gene to promote glucose uptake in colon cancer cells.


Asunto(s)
Humanos , Neoplasias del Colon , Células HCT116 , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , ARN Mensajero , Glucosa , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas 14-3-3/metabolismo
2.
Journal of Central South University(Medical Sciences) ; (12): 101-108, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929011

RESUMEN

YWHAE gene is located on chromosome 17p13.3, and its product 14-3-3epsilon protein belongs to 14-3-3 protein family. As a molecular scaffold, YWHAE participates in biological processes such as cell adhesion, cell cycle regulation, signal transduction and malignant transformation, and is closely related to many diseases. Overexpression of YWHAE in breast cancer can increase the ability of proliferation, migration and invasion of breast cancer cells. In gastric cancer, YWHAE acts as a negative regulator of MYC and CDC25B, which reduces their expression and inhibits the proliferation, migration, and invasion of gastric cancer cells, and enhances YWHAE-mediated transactivation of NF-κB through CagA. In colorectal cancer, YWHAE lncRNA, as a sponge molecule of miR-323a-3p and miR-532-5p, can compete for endogenous RNA through direct interaction with miR-323a-3p and miR-532-5p, thus up-regulating K-RAS/ERK/1/2 and PI3K-AKT signaling pathways and promoting the cell cycle progression of the colorectal cancer. YWHAE not only mediates tumorigenesis as a competitive endogenous RNA, but also affects gene expression through chromosome variation. For example, the FAM22B-YWHAE fusion gene caused by t(10; 17) (q22; p13) may be associated with the development of endometrial stromal sarcoma. At the same time, the fusion transcript of YWHAE and NUTM2B/E may also lead to the occurrence of endometrial stromal sarcoma. To understand the relationship between YWHAE, NUTM2A, and NUTM2B gene rearrangement/fusion and malignant tumor, YWHAE-FAM22 fusion gene/translocation and tumor, YWHAE gene polymorphism and mental illness, as well as the relationship between 17p13.3 region change and disease occurrence. It provides new idea and basis for understanding the effect of YWHAE gene molecular mechanism and genetic variation on the disease progression, and for the targeted for the diseases.


Asunto(s)
Femenino , Humanos , Proteínas 14-3-3/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/genética , Neoplasias Endometriales , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Sarcoma Estromático Endometrial/patología , Neoplasias Gástricas/genética , Factores de Transcripción/genética , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA