Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Artículo en Chino | WPRIM | ID: wpr-1019057

RESUMEN

Narciclasine(NCS),a hymenocallis littoralis alkaloid extracted from the bulbs of the genus Narcissus in the Lycoriaceae family,has been proven to have significant anti-tumor activity against a variety of tumor cells.The antitumor mechanisms of NCS are diverse and NCS exhibits antitumor effects through different pathways,which adapts to the current trend of developing multi-target anti-tumor drugs.This review introduces the research progress of the anti-tumor activity and mechanism of NCS in recent years based on the inhibitory effect of NCS on gastric cancer cells,oral cancer cells,polymorphous glioblastoma cells,colon cancer cells,breast cancer cells,melanoma cells and primary exudative lymphoma cells,aiming to provide ideas and references for the research and development,and design of NCS type anti-tumor drugs in the future.

2.
Acta Pharmaceutica Sinica ; (12): 1-16, 2024.
Artículo en Chino | WPRIM | ID: wpr-1005433

RESUMEN

The heat shock protein 90 (Hsp90) protein family is a cluster of highly conserved molecules that play an important role in maintaining cellular homeostasis. Hsp90 and its co-chaperones regulate a variety of pathways and cellular functions, such as cell growth, cell cycle control and apoptosis. Hsp90 is closely associated with the occurrence and development of tumors and other diseases, making it an attractive target for cancer therapeutics. Inhibition of Hsp90 expression can affect multiple oncogenic pathways simultaneously. Most Hsp90 small molecule inhibitors are in clinical trials due to their low efficacy, toxicity or drug resistance, but they have obvious synergistic anti-tumor effect when used with histone deacetylase (HDAC) inhibitors, tubulin inhibitors or topoisomerase II (Topo II) inhibitors. To address this issue, the design of Hsp90 dual-target inhibitors can improve efficacy and reduce drug resistance, making it an effective tumor treatment strategy. In this paper, the domain and biological function of Hsp90 are briefly introduced, and the design, discovery and structure-activity relationship of Hsp90 dual inhibitors are discussed, in order to provide reference for the discovery of novel Hsp90 dual inhibitors and clinical drug research from the perspective of medicinal chemistry.

3.
Chinese Pharmacological Bulletin ; (12): 592-598, 2024.
Artículo en Chino | WPRIM | ID: wpr-1013658

RESUMEN

Aim To analyze the anti-A549 and HI299 lung ade-nocarcinoma activities via using examples of baicalin, astragalo-side, hesperidin and cisplatin based on real time cellular analysis (RTCA) technology, and to build a new strategy for EC50 e-valuation reflecting the time-dimensional characteristic. Methods Using RTCA Software Pro for data analysis and GraphPad Prism and Origin Pro plotting, the in vitro anti-A549 and H1299 lung adenocarcinoma activities of baicalin, astragaloside, hesperidin, and cisplatin were characterized using the endpoint method and time dimension, respectively. Results (X) There were significant differences in EC50 values of A549 and H1299 cells at 24 h and 48 h endpoint methods. (2) The correlation coefficient of the curve fitted with the four-parameter equation was > 0. 9, and the dynamic change of EC50 remained relatively stable (the linear fitting of EC50 at adjacent 4 points I slope 1

4.
Artículo en Inglés | WPRIM | ID: wpr-1010326

RESUMEN

Elemene, derived from Curcuma wenyujin, one of the "8 famous genuine medicinal materials of Zhejiang province," exhibits remarkable antitumor activity. It has gained wide recognition in clinical practice for effectiveness on tumors. Dr. XIE Tian, introduced the innovative concept of "molecular compatibility theory" by combining Chinese medicine principles, specifically the "monarch, minister, assistant, and envoy" theory, with modern biomedical technology. This groundbreaking approach, along with a systematic analysis of Chinese medicine and modern biomedical knowledge, led to the development of elemene nanoliposome formulations. These novel formulations offer numerous advantages, including low toxicity, well-defined composition, synergistic effects on multiple targets, and excellent biocompatibility. Following the principles of the "molecular compatibility theory", further exploration of cancer treatment strategies and methods based on elemene was undertaken. This comprehensive review consolidates the current understanding of elemene's potential antitumor mechanisms, recent clinical investigations, advancements in drug delivery systems, and structural modifications. The ultimate goal of this review is to establish a solid theoretical foundation for researchers, empowering them to develop more effective antitumor drugs based on the principles of "molecular compatibility theory".


Asunto(s)
Humanos , Estudios Retrospectivos , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Sesquiterpenos/uso terapéutico
5.
Artículo en Chino | WPRIM | ID: wpr-970505

RESUMEN

By various chromatographic techniques and extensive spectroscopic methods, 17 abietane diterpenoids were isolated from the dichloromethane fraction of the 95% ethanol cold-soak extracts of the seeds of Pseudolarix amabilis, namely pseudoamaol A(1), 12α-hydroxyabietic acid(2), 12-methoxy-7,13-abietadien-18-oic acid(3), 13-hydroxy-8,11,13-podocarpatrien-18-oic acid(4), 15-hydroxy-7,13-abietadien-12-on-18-oic acid(5), 8(14)-podocarpen-13-on-18-oic acid(6), holophyllin K(7), metaglyptin B(8), 7α-hydroxydehydroabietinsaure-methylester(9), 7-oxodehydroabietic acid(10), 15-hydroxy-7-oxodehydroabietinsaure-methy-lester(11), 15-methoxydidehydroabietic acid(12), 7-oxo-15-hydroxy-dehydroabietic acid(13), 15-hydroxydehydroabietic acid(14), 8,11,13-abietatriene-15,18-diol(15), 8,11,13-abietatriene-15-hydroxy-18-succinic acid(16), and 7β-hydroxydehydroabie-tic acid(17). Compound 1 was a new compound. The isolated compounds were evaluated for their antitumor activities(HepG2, SH-SY5Y, K562), and compounds 8 and 17 showed potential cytotoxic activity against K562 cells, with IC_(50) values of 26.77 and 37.35 μmol·L~(-1), respectively.


Asunto(s)
Humanos , Estructura Molecular , Neuroblastoma , Diterpenos/química , Antineoplásicos
6.
Artículo en Chino | WPRIM | ID: wpr-970516

RESUMEN

Glioblastoma is the most common primary cranial malignancy, and chemotherapy remains an important tool for its treatment. Sanggenon C(San C), a class of natural flavonoids extracted from Morus plants, is a potential antitumor herbal monomer. In this study, the effect of San C on the growth and proliferation of glioblastoma cells was examined by methyl thiazolyl tetrazolium(MTT) assay and 5-bromodeoxyuridinc(BrdU) labeling assay. The effect of San C on the tumor cell cycle was examined by flow cytometry, and the effect of San C on clone formation and self-renewal ability of tumor cells was examined by soft agar assay. Western blot and bioinformatics analysis were used to investigate the mechanism of the antitumor activity of San C. In the presence of San C, the MTT assay showed that San C significantly inhibited the growth and proliferation of tumor cells in a dose and time-dependent manner. BrdU labeling assay showed that San C significantly attenuated the DNA replication activity in the nucleus of tumor cells. Flow cytometry confirmed that San C blocked the cell cycle of tumor cells in G_0/G_1 phase. The soft agar clone formation assay revealed that San C significantly attenuated the clone formation and self-renewal ability of tumor cells. The gene set enrichment analysis(GSEA) implied that San C inhibited the tumor cell division cycle by affecting the myelocytomatosis viral oncogene(MYC) signaling pathway. Western blot assay revealed that San C inhibited the expression of cyclin through the regulation of the MYC signaling pathway by lysine demethylase 4B(KDM4B), which ultimately inhibited the growth and proliferation of glioblastoma cells and self-renewal. In conclusion, San C exhibits the potential antitumor activity by targeting the KDM4B-MYC axis to inhibit glioblastoma cell growth, proliferation, and self-renewal.


Asunto(s)
Humanos , Glioblastoma/genética , Bromodesoxiuridina/uso terapéutico , Transducción de Señal , Proteínas Proto-Oncogénicas c-myc/metabolismo , Agar , Proliferación Celular , Línea Celular Tumoral , Apoptosis , Histona Demetilasas con Dominio de Jumonji/metabolismo
7.
Acta Pharmaceutica Sinica ; (12): 3070-3075, 2023.
Artículo en Chino | WPRIM | ID: wpr-999045

RESUMEN

To discover new structural hits, based on the important role of pyrazole ring and fragment of pyridinone carboxylic acid in drug design, novel title pyrazolo[3,4-b]pyridine-4-one-5-carboxylic acid derivatives (10a-10p) were designed and synthesized, the structures were confirmed by spectral data and elemental analyses. The antibacterial and antitumor activities were evaluated by the measured minimum inhibitory concentration (MIC) values against the tested four strains and half inhibitory concentration (IC50) values against the tested four cancer cells, respectively. The results displayed markedly poor antibacterial activity and observably potent antitumor activity. In particularly, the title difluorophenyl (10d, 10e, 10f), pyridyl (10j), ethyl (10k) and cycloproyl (10l) compounds exhibited comparable activity against Capan-1 and A549 cells to that of the comparison doxorubicin. Thus, pyrazolo[3,4-b]pyridine-4-one-5-carboxylic acid derivatives as promising antitumor hits need to be developed.

8.
Artículo en Chino | WPRIM | ID: wpr-1003593

RESUMEN

@#Based on our previous work, the study herein designed and synthesized eight glycoconjugates of natural product harmine (14a-14h)by introducing a cyclohexylmethyloxyl group at its C7 position and coupling a methyl-2-amino-β-D-glucopyranoside to the N9 position through different lengths of alkyl chains.In vitro anti-tumor activity screening and structure-activity relationship studies showed that the antitumor activity of the conjugates increased with the lengthening of the alkyl chain in the linker.Compound 14h exhibited significantly better proliferative inhibitory activity against MDA-MB-231 breast cancer cells than harmine.As compared to harmine, the introduction of the carbohydrate moiety improved the water solubility of compound 14h and enhanced its tumor cell selectivity through the Warburg effect.Mechanism of action studies revealed that compound 14h induced apoptosis and G0/G1 cell cycle arrest in MDA-MB-231 cells, and inhibited tumor cell migration by interfering with epithelial-mesenchymal transition process.This study provides a new approach for the development of antitumor drugs based on harmine.

9.
Artículo en Inglés | WPRIM | ID: wpr-1011003

RESUMEN

Natural products are essential sources of antitumor drugs. One such molecule, β-elemene, is a potent antitumor compound extracted from Curcuma wenyujin. In the present investigation, a series of novel 13,14-disubstituted nitric oxide (NO)-donor β-elemene derivatives were designed, with β-elemene as the foundational compound, and subsequently synthesized to evaluate their therapeutic potential against leukemia. Notably, the derivative labeled as compound 13d demonstrated a potent anti-proliferative activity against the K562 cell line, with a high NO release. In vivo studies indicated that compound 13d could effectively inhibit tumor growth, exhibiting no discernible toxic manifestations. Specifically, a significant tumor growth inhibition rate of 62.9% was observed in the K562 xenograft tumor mouse model. The accumulated data propound the potential therapeutic application of compound 13d in the management of leukemia.


Asunto(s)
Humanos , Ratones , Animales , Línea Celular Tumoral , Donantes de Óxido Nítrico/farmacología , Sesquiterpenos/farmacología , Leucemia/tratamiento farmacológico , Bioensayo , Proliferación Celular
10.
Acta Pharmaceutica Sinica B ; (6): 4918-4933, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1011221

RESUMEN

As a novel and promising antitumor target, AXL plays an important role in tumor growth, metastasis, immunosuppression and drug resistance of various malignancies, which has attracted extensive research interest in recent years. In this study, by employing the structure-based drug design and bioisosterism strategies, we designed and synthesized in total 54 novel AXL inhibitors featuring a fused-pyrazolone carboxamide scaffold, of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions. Notably, compound 59 showed a desirable AXL kinase inhibitory activity (IC50: 3.5 nmol/L) as well as good kinase selectivity, and it effectively blocked the cellular AXL signaling. In turn, compound 59 could potently inhibit BaF3/TEL-AXL cell viability (IC50: 1.5 nmol/L) and significantly suppress GAS6/AXL-mediated cancer cell invasion, migration and wound healing at the nanomolar level. More importantly, compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency, in which we observed significant AXL phosphorylation suppression, and its antitumor efficacy at 20 mg/kg (qd) was comparable to that of BGB324 at 50 mg/kg (bid), the most advanced AXL inhibitor. Taken together, this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA