Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.571
Filtrar
1.
Chinese Journal of Lung Cancer ; (12): 25-37, 2024.
Artículo en Chino | WPRIM | ID: wpr-1010107

RESUMEN

BACKGROUND@#Transcription factor (TF) can bind specific sequences that either promotes or represses the transcription of target genes, and exerts important effects on tumorigenesis, migration, invasion. Staphylococcal nuclease-containing structural domain 1 (SND1), which is a transcriptional co-activator, is considered as a promising target for tumor therapy. However, its role in lung adenocarcinoma (LUAD) remains unclear. This study aims to explore the role of SND1 in LUAD.@*METHODS@#Data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA) database was obtained to explore the association between SND1 and the prognosis, as well as the immune cell infiltration, and subcellular localization in LUAD tissues. Furthermore, the functional role of SND1 in LUAD was verified in vitro. EdU assay, CCK-8 assay, flow cytometry, scratch assay, Transwell assay and Western blot were performed.@*RESULTS@#SND1 was found to be upregulated and high expression of SND1 is correlated with poor prognosis of LUAD patients. In addition, SND1 was predominantly present in the cytoplasm of LUAD cells. Enrichment analysis showed that SND1 was closely associated with the cell cycle, as well as DNA replication, and chromosome segregation. Immune infiltration analysis showed that SND1 was closely associated with various immune cell populations, including T cells, B cells, cytotoxic cells and dendritic cells. In vitro studies demonstrated that silencing of SND1 inhibited cell proliferation, invasion and migration of LUAD cells. Besides, cell cycle was blocked at G1 phase by down-regulating SND1.@*CONCLUSIONS@#SND1 might be an important prognostic biomarker of LUAD and may promote LUAD cells proliferation and migration.


Asunto(s)
Humanos , Pronóstico , Proteómica , Neoplasias Pulmonares/genética , Oncogenes , Adenocarcinoma del Pulmón/genética , Biomarcadores , Endonucleasas/genética
2.
Acta Pharmaceutica Sinica ; (12): 704-712, 2024.
Artículo en Chino | WPRIM | ID: wpr-1016613

RESUMEN

The objective of this study was to analyze the effects on cell viability, apoptosis, and cell cycle of non-small cell lung cancer (NSCLC) A549 cells after intervention with Agrimonia pilosa (AP) and investigate Agrimonia pilosa anti-tumor activity in vitro. Meanwhile, liquid chromatography mass spectrometry (LC-MS) metabolomics technology was used to analyze the changes of cellular metabolites and metabolic pathways. The results of this study will provide a theoretical and experimental basis for investigating the mechanism of the effect of Agrimonia pilosa on non-small cell lung cancer A549 cells. The results showed that the cell nucleus of A549 cells crumpled and apoptosis occurred with the increase of drug concentration. The survival rate of the cells decreased, and the inhibition rate reached 21.5% and 91.74% under the low and high dose conditions, respectively. Lactate dehydrogenase (LDH) content increased (P < 0.05). Metabolomics results showed significant differences in metabolism between groups, thirty-three distinct metabolites including LysoPC(24:0/0:0), LysoPC(17:0/0:0) and PC(O-40:5) were deduced. The pathway enrichment showed that the Agrimonia pilosa plays an anti-tumor role mainly by regulating the metabolism of glycerophosphate and purine in A549 cells, in which the effect on glycerophosphate metabolism pathway was most significant. The results of combined pharmacodynamics suggested that Agrimonia pilosa might induce apoptosis and inhibit the growth of A549 cells by regulating LysoPC(24:0/0:0), LysoPC(17:0/0:0) and PC(O-40:5) metabolites in A549 cells.

3.
Chinese Pharmacological Bulletin ; (12): 279-284, 2024.
Artículo en Chino | WPRIM | ID: wpr-1013628

RESUMEN

Aim To establish NCI-H446/EP for small cell lung cancer resistant cells resistant to cisplatin and etoposide, and to evaluate their biological characteristics and multidrug resistance. Methods Nude mice were subcutaneously inoculated with NCI-H446 cells of SCLC to construct an in vivo model of xenograft tumor, and were given first-line EP regimen treatment for SCLC, inducing drug resistance in vivo, and stripping tumor tissue in vitro culture to obtain drug-resistant cells. The resistance coefficient, cell doubling time, cell cycle distribution, expression of multidrug resistance gene (MDR1), and drug resistance-related protein were detected in vitro, and the drug resistance to cisplatin and etoposide in vivo were verified. Results Mice with NCI-H446 tumors acquired resistance after eight weeks' EP regimen treatment, and the drug-resistant cell line NCI-H446/EP was obtained by isolation and culture in vitro. The resistance factors of this cell line to cisplatin, etoposide, SN38 and doxorubicin were 12.01, 18.36, 65.4 and 10.12, respectively. Compared with parental cells, the proportion of NCIH446/EP cells in Q

4.
Chinese Pharmacological Bulletin ; (12): 114-158, 2024.
Artículo en Chino | WPRIM | ID: wpr-1013615

RESUMEN

Aim To investigate the effect of benzyl iso-thiocyanate (BITC) on the proliferation of mouse U14 cervical cancer cells and to explore the mechanism of cytotoxicity based on transcriptomic data analysis. Methods The effect of BITC on U14 cell activity was detected by MTT, nuclear morphological changes were observed by Hochest 33258 and fluorescent inverted microscope, cell cycle and apoptosis were determined by flow cytometry, and the transcriptome database of U14 cells before and after BITC (20 μmol · L

5.
Chinese Pharmacological Bulletin ; (12): 146-154, 2024.
Artículo en Chino | WPRIM | ID: wpr-1013609

RESUMEN

Aim To explore the effect of kaempferol-7- 0-neohesperidoside (K70N) against prostate cancer (PCa) and the underlying mechanism. Methods The effect of K70N on the proliferation of PCa cell lines PC3, DU145, C4-2 and LNCaP was detected using CCK8 assay. The effect of K70N on migration ability of DU145 cells was determined by wound healing assay. The targets of K70N and PCa were screened from SuperPred and other databases. The common targets both related to K70N and PCa were obtained from the Venny online platform, a protein-protein interaction network (PPI) was constructed by the String and Cyto- scape. Meanwhile, the GO and KEGG functional enrichment were analyzed by David database. Then, a "drug-target-disease-pathway" network model was constructed. Cell cycle of PCa cells treated with K70N was analyzed by flow cytometry. The expressions of cycle-associated proteins including Skp2, p27 and p21 protein were detected by Western blot. Molecular docking between Skp2 and K70N was conducted by Sybyl X2. 0. Results K70N significantly inhibited the proliferation and migration of PCa cells. A total number of 34 drug-disease intersection targets were screened. The String results showed that Skp2 and p27, among the common targets, were the key targets of K70N for PCa treatment. Furthermore, GO and KEGG functional en-richment indicated that the mechanism was mainly related to the cell cycle. Flow cytometry showed that K70N treatment induced cell cycle arrest at the S phase. Compared with the control group, the protein expression level of Skp2 was significantly down-regulated, while the protein expression levels of p27 and p21 were up-regulated. The network molecular docking indicated that the ligand K70N had a good binding ability with the receptor Skp2. Conclusions K70N could inhibit the proliferation and migration of PCa cells, block the cell cycle in the S phase, which may be related to the regulation of cell cycle through the Skp2- p27/p21 signaling pathway.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 74-82, 2024.
Artículo en Chino | WPRIM | ID: wpr-1013342

RESUMEN

ObjectiveTo investigate the effect of curcumin on the cycle arrest of human colon cancer HCT116 cells and decipher the possible molecular mechanism. MethodThe methyl thiazolyl tetrazolium (MTT) method was employed to examine the effects of curcumin (0, 12.5, 25, 50, 75, 100 μmol·L-1) and 5-fluorouracil (5-FU, 600 μmol·L-1) on the proliferation of HCT116 cells at different time points (24, 48, 72 h). Flow cytometry was employed to examine the cycle of HCT116 cells treated with curcumin (0, 25, 50, 75 μmol·L-1) and 5-FU. Western blot was employed to determine the expression of proteins in the Janus kinase 1 (JAK1)/signal transducer and activator of transcription 1 (STAT1) /cyclin-dependent kinase inhibitor 1A (p21) pathway in HCT116 cells. The binding of STAT1 to p21 promoter region was detected by chromatin immunoprecipitation (ChIP). Small interfering RNA (siRNA) was employed to measure the role of STAT1 in regulating the expression of p21 and that of JAK1 in regulating the activation of STAT1 by Western blot and cellular immunofluorescence, respectively. ResultCompared with the blank group, the HCT-116 cells treated with curcumin and 5-FU showed decreased viability (P<0.05), increased proportions of cells in the G0/G1 phase (P<0.05), decreased proportions of cells in the S phase and G2/M phase (P<0.05), down-regulated protein level of phosphorylated p21 (P<0.05), and up-regulated protein level of p21 (P<0.05). Compared with the curcumin group, the p21 siRNA+ curcumin group presented decreased proportion of cells in G0/G1 phase (P<0.05). Compared with the blank group, curcumin elevated the level of phosphorylated STAT1 (p-STAT1) (P<0.05). Compared with the curcumin group, the curcumin + STAT1 siRNA group showcased up-regulated protein level of p21 in HCT116 cells (P<0.05). The mechanism study showed that curcumin treatment enhanced the enrichment of STAT1 in the p21 promoter region (P<0.05) compared with the blank group. Compared with the blank group, curcumin up-regulated the level of phosphorylated JAK1 (p-JAK1) (P <0.05). Compared with the curcumin group, the curcumin + STAT1 siRNA group demonstrated up-regulated protein levels of p-STAT1 and p21 in HCT116 cells (P<0.05). ConclusionCurcumin may induce the cycle arrest of human colon cancer HCT116 cells by activating the JAK1/STAT1/p21 signaling pathway.

7.
Chinese Journal of Radiological Health ; (6): 28-32, 2024.
Artículo en Chino | WPRIM | ID: wpr-1012766

RESUMEN

Objective To investigate the effects of prolonged low-dose neutron-γ radiation on peripheral blood lymphocytes of logging workers. Methods The health information of workers in a logging company was collected by on-site blood sample collection and questionnaire survey. Individual doses of γ and neutron radiation were recorded using LiF elements and CR-39, respectively. Lymphocyte count in peripheral blood was measured by blood cytometer. Cell cycle and cyclins were detected by flow cytometry. Results The annual dose of some logging workers exceeded 5 mSv. Lymphocyte counts showed a difference of 15% between the group exposed to the lowest annual dose of 0–1 mSv (mean: 2.45 × 109/L) and the group exposed to the highest annual dose of 5–25 mSv (mean: 2.08 × 109/L). In comparison to pre-shift workers, logging workers exhibited a G1-phase arrest in the lymphocyte cycle, along with increased expression of cyclins p21 and CDK2. Conclusion Prolonged exposure to low-dose neutron-γ radiation leads to reduced lymphocyte counts as well as changes in lymphocyte cycle and cyclin expression.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 26-36, 2024.
Artículo en Chino | WPRIM | ID: wpr-1003763

RESUMEN

ObjectiveTo study the effect of Qizhu Kang'ai prescription (QZAP) on the gluconeogenesis enzyme phosphoenolpyruvate carboxykinase 1 (PCK1) in the liver of mouse model of liver cancer induced by diethylnitrosamine (DEN) combined with carbon tetrachloride (CCl4) and Huh7 cells of human liver cancer, so as to explore the mechanism on regulating metabolic reprogramming and inhibiting cell proliferation of liver cancer cells. MethodDEN combined with CCl4 was used to construct a mouse model of liver cancer via intraperitoneal injection. A normal group, a model group, and a QZAP group were set up, in which QZAP (3.51 g·kg-1) or an equal volume of normal saline was administered daily by gavage, respectively. Serum and liver samples were collected after eight weeks of intervention. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (γ-GT), and alpha-fetoprotein (AFP) in mice were detected to evaluate liver function changes of mice in each group. Hematoxylin-eosin (HE) staining and Sirius red staining were used to observe pathological changes in liver tissue. In the cell experiment, Huh7 cells were divided into blank group, QZAP low, medium, and high dose groups and/or PCK1 inhibitor (SKF-34288 hydrochloride) group, and Sorafenib group. The corresponding drug-containing serum and drug treatment were given, respectively. Cell counting kit-8 (CCK-8) method, colony formation experiment, Edu fluorescent labeling detection, intracellular adenosine triphosphate (ATP) content detection, and cell cycle flow cytometry detection were used to evaluate the proliferation ability, energy metabolism changes, and change in the cell cycle of Huh7 cells in each group. Western blot was used to detect the protein expression levels of PCK1, serine/threonine kinase (Akt), phosphorylated Akt (p-Akt), and cell cycle-dependent protein kinase inhibitor 1A (p21). ResultCompared with the model group, the pathological changes such as cell atypia, necrosis, and collagen fiber deposition in liver cancer tissue of mice in the QZAP group were alleviated, and the number of liver tumors was reduced (P<0.01). The serum ALT, AST, γ-GT, and AFP levels were reduced (P<0.01). At the cell level, compared with the blank group, low, medium, and high-dose groups of QZAP-containing serum and the Sorafenib group could significantly reduce the survival rate of Huh7 cells (P<0.01) and the number of positive cells with Edu labeling (P<0.01) and inhibit clonal proliferation ability (P<0.01). The QZAP groups could also reduce the intracellular ATP content (P<0.05) and increase the distribution ratio of the G0/G1 phase of the cell cycle (P<0.05) in a dose-dependent manner. Compared with the model group and blank group, PCK1 and p21 protein levels of mouse liver cancer tissue and Huh7 cells in the QZAP groups were significantly reduced (P<0.05,P<0.01), and the p-Akt protein level was significantly increased (P<0.01). Compared with the blank group, the ATP content and cell survival rate of Huh7 cells in the SKF-34288 hydrochloride group were significantly increased (P<0.05), but there was no statistical difference in the ratio of Edu-positive cells and the proportion of G0/G1 phase distribution. Compared with the SKF-34288 hydrochloride group, the QZAP combined with the SKF-34288 hydrochloride group significantly reduced the ATP content, cell survival rate, and Edu-positive cell ratio of Huh7 cells (P<0.05) and significantly increased the G0/G1 phase distribution proportion (P<0.05). ConclusionQZAP may induce the metabolic reprogramming of liver cancer cells by activating PCK1 to promote Akt/p21-mediated tumor suppression, thereby exerting an anti-hepatocellular carcinoma proliferation mechanism.

9.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1550814

RESUMEN

Después de las enfermedades cardiovasculares, el cáncer, una patología no transmisible, ha sido considerado como la segunda causa de muertes cada año a nivel global y como la barrera más importante para aumentar la esperanza de vida en el siglo 21. Se han alcanzado avances de gran relevancia en su prevención y tratamiento; sin embargo, existe aún un largo camino por recorrer para alcanzar un tratamiento efectivo para cada tipo de cáncer. En este trabajo se describen enfoques de reposicionamiento y síntesis de moléculas híbridas con potencial actividad antineoplásica. Para obtener el al-dehído intermediario clave, se empleó la metodología de oxidación de Dess-Martin, que fue acoplado con las cetonas correspondientes usando LDA; se generó así una mezcla racémica para cada uno de los compuestos híbridos propuestos. La actividad antiproliferativa in vitro de los compuestos finales se evaluó frente a ocho líneas celulares derivadas de tumores sólidos humanos, y cuatro líneas celulares no cancerosas. El compuesto 11d resulto ser el más efectivo y con mayor índice de seguridad. Los resultados sugirieron que estos compuestos podrían bloquear el ciclo celular e inducir la apop-tosis y la muerte en las células CCRF-CEM de forma dependiente de la dosis in vitro.


After cardiovascular diseases, cancer, a non-communicable pathology, has been considered the second cause of death each year globally and as the most important barrier to increasing life expectancy in the 21st century. Advances of great relevance have been made in its prevention and treatment, however, there is still a long way to go to achieve an effective treatment for each type of cancer. This paper describes approaches to reposition and synthesis of hybrid molecules with potential antineoplastic activity. To obtain the key intermediate aldehyde, the Dess-Martin oxidation methodology was used, which was coupled with the corresponding ketones using LDA. The final hybrid compounds were obtained as a racemic mixture. The in vitro antiproli-ferative activity of the final compounds was evaluated against eight cell lines derived from human solid tumors, and four non-cancerous cell lines. The compound 11d turned out to be the most effective and with the highest safety index. The results suggested that these compounds could block the cell cycle and induce apoptosis and death in CCRF-CEM cells in a dose-dependent manner in vitro.


Depois das doenças cardiovasculares, o câncer, uma patologia não transmissível, tem sido considerado como a segunda causa de mortes a cada ano em todo o mundo e como a barreira mais importante para o aumento da expectativa de vida no século 21. Avanços de grande relevância têm sido feitos na sua prevenção e tratamento, no entanto, ainda há um longo caminho a percorrer para alcançar um tratamento eficaz para cada tipo de câncer. Este artigo descreve abordagens para o reposicionamento e síntese de moléculas híbridas com potencial atividade antineoplásica. Para a obtenção do aldeído intermediário chave, foi utilizada a metodologia de oxidação de Dess-Martin, que foi acoplada com as cetonas correspondentes usando LDA. Os compostos híbridos finais foram obtidos como uma mistura racêmica. A atividade antiproliferativa in vitro dos compostos finais foi avaliada contra oito linhagens celulares derivadas de tumores sólidos humanos e quatro linhagens celulares não cancerosas. O composto 11d revelou-se o mais eficaz e com o maior índice de segurança. Os resultados sugeriram que estes compostos poderiam bloquear o ciclo celular e induzir apoptose e morte em células CCRF-CEM de forma dose-de-pendente in vitro.

10.
Journal of Experimental Hematology ; (6): 1290-1295, 2023.
Artículo en Chino | WPRIM | ID: wpr-1009983

RESUMEN

OBJECTIVE@#To investigate the effects of methionine restriction on proliferation, cell cycle and apoptosis of human acute leukemia cells.@*METHODS@#Cell Counting Kit-8 (CCK-8) assay was used to detect the effect of methionine restriction on HL-60 and Jurkat cells proliferation. The effect of methionine restriction on cell cycle of HL-60 and Jurkat cells was examined by PI staining. Annexin V-FITC / PI double staining was applied to detect apoptosis of HL-60 and Jurkat cells following methionine restriction. The expression of cell cycle-related proteins cyclin B1, CDC2 and apoptosis-related protein Bcl-2 was evaluated by Western blot assay.@*RESULTS@#Methionine restriction significantly inhibited the proliferation of HL-60 and Jurkat cells in a time-dependent manner (HL-60: r =0.7773, Jurkat: r =0.8725), arrested the cells at G2/M phase (P < 0.001), and significantly induced apoptosis of HL-60 and Jurkat cells (HL-60: P < 0.001; Jurkat: P < 0.05). Furthermore, Western blot analysis demonstrated that methionine restriction significantly reduced the proteins expression of Cyclin B1 (P < 0.05), CDC2 (P < 0.01) and Bcl-2 (P < 0.001) in HL-60 and Jurkat cells.@*CONCLUSION@#Acute leukemia cells HL-60 and Jurkat exhibit methionine dependence. Methionine restriction can significantly inhibit the proliferation, promote cell cycle arrest and induce apoptosis of HL-60 and Jurkat cells, which suggests that methionine restriction may be a potential therapeutic strategy for acute leukemia.


Asunto(s)
Humanos , Ciclina B1/farmacología , Proliferación Celular , Metionina/farmacología , Ciclo Celular , Apoptosis , Leucemia Mieloide Aguda , División Celular , Proteínas de Ciclo Celular , Células Jurkat , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células HL-60
11.
International Eye Science ; (12): 193-197, 2023.
Artículo en Chino | WPRIM | ID: wpr-960934

RESUMEN

AIM: To elucidate the effect of histone deacetylase(HDAC)inhibitor suberoylanilide hydroxamic acid(SAHA)on the proliferation of choroidal melanoma(CM)cell line C918 and to explore the related mechanism.METHODS: Inverted fluorescence microscope was used to observe the effect of different concentrations of SAHA(0.625, 1.25 or 2.5 μmol/L)on the morphology of C918 cell. The cell viability was detected by cholecystokinin octapeptide(CCK-8)assay. Plate clone formation assay and EdU staining were carried out to measure the effect of SAHA on the cell proliferation. Meanwhile, the expressions of cell proliferation-related proteins including c-Myc, CyclinA2 and CDK2, and histone deacetylase 7(HDAC7)and fibroblast growth factor 18(FGF18)were detected by Western blot.RESULTS: Compared with the control group, the cell density was reduced in SAHA. SAHA could also promote cell shrinkage, and the inhibition on cell was in a concentration-dependent manner. CCK-8 assay showed that SAHA treatment decreased cell viability in a dose-dependent manner and the inhibition rate was 80% when SAHA at 2.5 μmol/L. Compared with the control group, Western blot showed that SAHA could suppress the expression of cell proliferation proteins including c-Myc, CyclinA2 and CDK2 in a dose-dependent manner. In addition, 1.25 μmol/L SAHA significantly decreased the numbers of EdU staining positive cells and cell clones. More importantly, SAHA could dose-dependently decrease the expression of HDAC7 and FGF18 compared with control group.CONCLUSION: SAHA could inhibit the proliferation of CM cell line C918 by inhibiting the HDAC7/FGF18 signaling pathway.

12.
Chinese Journal of Biotechnology ; (12): 1525-1547, 2023.
Artículo en Chino | WPRIM | ID: wpr-981152

RESUMEN

Cell cycle plays a crucial role in cell development. Cell cycle progression is mainly regulated by cyclin dependent kinase (CDK), cyclin and endogenous CDK inhibitor (CKI). Among these, CDK is the main cell cycle regulator, binding to cyclin to form the cyclin-CDK complex, which phosphorylates hundreds of substrates and regulates interphase and mitotic progression. Abnormal activity of various cell cycle proteins can cause uncontrolled proliferation of cancer cells, which leads to cancer development. Therefore, understanding the changes in CDK activity, cyclin-CDK assembly and the role of CDK inhibitors will help to understand the underlying regulatory processes in cell cycle progression, as well as provide a basis for the treatment of cancer and disease and the development of CDK inhibitor-based therapeutic agents. This review focuses on the key events of CDK activation or inactivation, and summarizes the regulatory processes of cyclin-CDK at specific times and locations, as well as the progress of research on relevant CDK inhibitor therapeutics in cancer and disease. The review concludes with a brief description of the current challenges of the cell cycle process, with the aim to provide scientific references and new ideas for further research on cell cycle process.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Quinasa 2 Dependiente de la Ciclina
13.
Journal of Southern Medical University ; (12): 710-717, 2023.
Artículo en Chino | WPRIM | ID: wpr-986980

RESUMEN

OBJECTIVE@#To screen for small molecular compounds with selective inhibitory activity against cutaneous melanoma cells with BAP1 deletion.@*METHODS@#Cutaneous melanoma cells expressing wild-type BAP1 were selected to construct a BAP1 knockout cell model using CRISPR-Cas9 system, and small molecules with selective inhibitory activity against BAP1 knockout cells were screened from a compound library using MTT assay. Rescue experiment was carried out to determine whether the sensitivity of BAP1 knockout cells to the candidate compounds was directly related to BAP1 deletion. The effects of the candidate compounds on cell cycle and apoptosis were detected with flow cytometry, and the protein expressions in the cells were analyzed with Western blotting.@*RESULTS@#The p53 activator RITA from the compound library was shown to selectively inhibit the viability of BAP1 knockout cells. Overexpression of wild-type BAP1 reversed the sensitivity of BAP1 knockout cells to RITA, while overexpression of the mutant BAP1 (C91S) with inactivated ubiquitinase did not produce any rescue effect. Compared with the control cells expressing wild-type BAP1, BAP1 knockout cells were more sensitive to RITA-induced cell cycle arrest and apoptosis (P < 0.0001) and showed an increased expression of p53 protein, which was further increased by RITA treatment (P < 0.0001).@*CONCLUSION@#Loss of BAP1 results in the sensitivity of cutaneous melanoma cells to p53 activator RITA. In melanoma cells, the activity of ubiquitinase in BAP1 is directly related to their sensitivity to RITA. An increased expression of p53 protein induced by BAP1 knockout is probably a key reason for RITA sensitivity of melanoma cells, suggesting the potential of RITA as a targeted therapeutic agent for cutaneous melanoma carrying BAP1-inactivating mutations.


Asunto(s)
Humanos , Melanoma , Neoplasias Cutáneas , Proteína p53 Supresora de Tumor , Apoptosis , División Celular , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética
14.
Journal of Southern Medical University ; (12): 544-551, 2023.
Artículo en Chino | WPRIM | ID: wpr-986960

RESUMEN

OBJECTIVE@#To analyze the expression of hydroxysteroid dehydrogenase like 2 (HSDL2) in rectal cancer tissues and the effect of changes in HSDL2 expression level on proliferation of rectal cancer cells.@*METHODS@#Clinical data and tissue samples of 90 patients with rectal cancer admitted to our hospital from January 2020 to June 2022 were collected from the prospective clinical database and biological specimen database. The expression level of HSDL2 in rectal cancer and adjacent tissues was detected by immunohistochemistry, and based on the median level of HSDL2 expression, the patients were divided into high expression group (n=45) and low expression group (n=45) for analysis the correlation between HSDL2 expression level and the clinicopathological parameters. GO and KEGG enrichment analyses were performed to explore the role of HSDL2 in rectal cancer progression. The effects of changes in HSDL2 expression levels on rectal cancer cell proliferation, cell cycle and protein expressions were investigated in SW480 cells with lentivirus-mediated HSDL2 silencing or HSDL2 overexpression using CCK-8 assay, flow cytometry and Western blotting.@*RESULTS@#The expressions of HSDL2 and Ki67 were significantly higher in rectal cancer tissues than in the adjacent tissues (P < 0.05). Spearman correlation analysis showed that the expression of HSDL2 protein was positively correlated with Ki67, CEA and CA19-9 expressions (P < 0.01). The rectal cancer patients with high HSDL2 expressions had significantly higher likelihood of having CEA ≥5 μg/L, CA19-9 ≥37 kU/L, T3-4 stage, and N2-3 stage than those with a low HSDL2 expression (P < 0.05). GO and KEGG analysis showed that HSDL2 was mainly enriched in DNA replication and cell cycle. In SW480 cells, HSDL2 overexpression significantly promoted cell proliferation, increased cell percentage in S phase, and enhanced the expression levels of CDK6 and cyclinD1 (P < 0.05), and HSDL2 silencing produced the opposite effects (P < 0.05).@*CONCLUSION@#The high expression of HSDL2 in rectal cancer participates in malignant progression of the tumor by promoting the proliferation and cell cycle progress of the cancer cells.


Asunto(s)
Humanos , Antígeno CA-19-9 , Antígeno Ki-67/metabolismo , Estudios Prospectivos , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias del Recto/genética , Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Hidroxiesteroide Deshidrogenasas/metabolismo
15.
Cancer Research on Prevention and Treatment ; (12): 243-248, 2023.
Artículo en Chino | WPRIM | ID: wpr-986708

RESUMEN

Objective To investigate the effect of MDM2 inhibitor RG-7388 on the proliferation, cell cycle, and apoptosis of diffuse large B-lymphoma (DLBCL) cells. Methods DLBCL cell strains SUDHL2 and HBL1 were treated with 2, 4, and 8 μmol/LRG7388, respectively. Cell proliferation was detected by CCK8 and EdU methods. Apoptosis was measured by Annexin V–FITC/PI double staining and Caspase 3/7-Glo enzyme activity methods. Cell cycle was assessed by flow cytometry. Changes in the expression of cell cycle and apoptosis-related proteins were determined by Western blot. Results The IC50 of RG7388 for inhibiting SUDHL2 and HBL1 cells were 3.36 and 3.76 μmol/L, respectively, and the inhibitory effect of RG7388 was dose dependent. The proportions of G1 phase and apoptotic cells in the SUDHL2 and HBL1 cells treated with different doses of RG7388 were significantly higher than those in the control group (all P<0.05). The activity of Caspase 3/7 increased gradually with RG7388 concentration, compared with that in the control group. The expression levels of p53, p27, p21, and PARP increased, whereas the expression of Mcl-1 and Bcl-xL was down-regulated (all P<0.05). Conclusion MDM2 inhibitor RG-7388 inhibits the proliferation of DLBCL cells, triggers cell cycle arrest in the G1 phase, and induces apoptosis through the p53 pathway.

16.
Journal of Zhejiang University. Science. B ; (12): 442-454, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982384

RESUMEN

CUDC-101, an effective and multi-target inhibitor of epidermal growth factor receptor (EGFR), histone deacetylase (HDAC), and human epidermal growth factor receptor 2 (HER2), has been reported to inhibit many kinds of cancers, such as acute promyelocytic leukemia and non-Hodgkin's lymphoma. However, no studies have yet investigated whether CUDC-101 is effective against myeloma. Herein, we proved that CUDC-101 effectively inhibits the proliferation of multiple myeloma (MM) cell lines and induces cell apoptosis in a time- and dose-dependent manner. Moreover, CUDC-101 markedly blocked the signaling pathway of EGFR/phosphoinositide-3-kinase (PI3K) and HDAC, and regulated the cell cycle G2/M arrest. Moreover, we revealed through in vivo experiment that CUDC-101 is a potent anti-myeloma drug. Bortezomib is one of the important drugs in MM treatment, and we investigated whether CUDC-101 has a synergistic or additive effect with bortezomib. The results showed that this drug combination had a synergistic anti-myeloma effect by inducing G2/M phase blockade. Collectively, our findings revealed that CUDC-101 could act on its own or in conjunction with bortezomib, which provides insights into exploring new strategies for MM treatment.


Asunto(s)
Humanos , Antineoplásicos/uso terapéutico , Apoptosis , Bortezomib/farmacología , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Puntos de Control de la Fase G2 del Ciclo Celular , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Células M , Mieloma Múltiple/tratamiento farmacológico
17.
Journal of Experimental Hematology ; (6): 801-809, 2023.
Artículo en Chino | WPRIM | ID: wpr-982133

RESUMEN

OBJECTIVE@#To investigate the biological function of miR-203a-5p and the underlying mechanism in multiple myeloma (MM).@*METHODS@#Three miRNA expression profiles (GSE16558, GSE24371 and GSE17498) were downloaded from the GEO database. The three miRNA expression profiles contained 131 MM samples and 17 normal plasmacyte samples. The robust rank aggregation (RRA) method was used to identify the differentially expressed miRNAs between MM and normal plasmacytes. In order to carry out cytological experiments, MM cell line with stable over-expression of miR-203a-5p was constructed with lentivirus. Expression levels of miR-203a-5p in MM cells were quantified by qRT-PCR. The effects of miR-203a-5p on MM cells were investigated using assays of cell viability and cell cycle. Cell proliferation was measured using the Cell Counting kit (CCK)8 assay. The percentage of cells in each cell cycle was measured with a FACSCalibur system. Xenograft tumor models were established to evaluate the role of miR-203a-5p in tumorigenesis in vivo . To elucidate the underlying molecular mechanisms of miR-203a-5p in mediating cell proliferation inhibition and cell cycle arrest in MM, we used TargetScan and miRanda to predict the candidate targets of miR-203a-5p. The potential target of miR-203a-5p in MM cells was explored using the luciferase reporter assay, qRT-PCR, and Western blot.@*RESULTS@#An integrated analysis of three MM miRNA expression datasets showed that the levels of miR-203a-5p in MM were notably downregulated compared with those in normal plasmacytes. Accordingly, the relative expression levels of miR-203a-5p were decreased in MM cell lines. In addition, overexpression of miR-203a-5p inhibited the proliferation and cell cycle progression of RPMI8226 and U266 cells. In vivo experiments demonstrated that upregulation of miR-203a-5p expression could significantly inhibit the tumorigenesis of subcutaneous myeloma xenografts in nude mice. Mechanistic investigation led to the identification of Jagged 1 (JAG1) as a novel and direct downstream target of miR-203a-5p. Interestingly, the reintroduction of JAG1 abrogated miR-203a-5p-induced MM cell growth inhibition and cell cycle arrest.@*CONCLUSION@#Our data demonstrate that miR-203a-5p inhibits cell proliferation and cell cycle progression in MM cells by targeting JAG1, supporting the utility of miR-203a-5p as a novel and potential therapeutic agent for miRNA-based MM therapy.


Asunto(s)
Animales , Ratones , Humanos , Mieloma Múltiple/patología , Línea Celular Tumoral , Ratones Desnudos , MicroARNs/metabolismo , División Celular , Proliferación Celular , Modelos Animales de Enfermedad , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Proteína Jagged-1/metabolismo
18.
Journal of Experimental Hematology ; (6): 699-706, 2023.
Artículo en Chino | WPRIM | ID: wpr-982119

RESUMEN

OBJECTIVE@#To investigate the mechanism of nucleolin (NCL) involved in lymphoma proliferation by regulating thymidine kinase 1 (TK1).@*METHODS@#Twenty-three patients with diffuse large B-cell lymphoma (DLBCL) were selected and divided into initial treatment group (14 cases) and relapsed/refractory group (9 cases). Serum TK1 and C23 protein in peripheral blood mononuclear cells were detected. Cell models of CA46-NCL-KD (CA46-NCL-knockdown) and CA46-NCL-KNC (CA46-NCL-knockdown negative control) were established by lentivirus vector mediated transfection in Burkitt lymphoma cell line CA46. The half maximal inhibitory concentration (IC50) of CA46-NCL-KD, CA46-NCL-KNC, and CA46 to adriamycin were detected by cell proliferation assay (MTS). The expression of NCL mRNA and protein in CA46-NCL-KD and CA46-NCL-KNC cells were dectected by Q-PCR and Western blot, respectively. The cell cycle of CA46-NCL-KD, CA46-NCL-KNC, and CA46 cells were detected by flow cytometry. The expression of TK1 protein in CA46-NCL-KD and CA46-NCL-KNC cells was detected by an enhanced chemiluminescence (ECL) dot blot assay.@*RESULTS@#The level of serum TK1 in the initial treatment group was 0.43(0-30-1.01) pmol/L, which was lower than 10.56(2.19-14.99) pmol/L in the relapsed/refractory group (P<0-01), and the relative expression level of NCL protein in peripheral blood was also significantly lower. The IC50 of CA46-C23-KD cells to adriamycin was (0.147±0.02) μg/ml, which was significantly lower than (0.301±0.04) μg/ml of CA46-C23-KNC cells and (0.338±0.05) μg/ml of CA46 cells (P<0.05). Compared with CA46-NCL-KNC cells, the expression of NCL mRNA and protein, TK1 protein decreased in CA46-NCL-KD cells, and the proportion of S phase and G2/M phase also decreased, while G0/G1 phase increased in cell cycle.@*CONCLUSION@#The increased expression of NCL in DLBCL and CA46 cells indicates low sensitivity to drug. NCL may participate in regulation of lymphoma proliferation by affecting TK1 expression, thereby affecting the drug sensitivity.


Asunto(s)
Humanos , Leucocitos Mononucleares/metabolismo , Apoptosis , Línea Celular Tumoral , Linfoma , Timidina Quinasa/farmacología , Doxorrubicina/farmacología , División Celular , ARN Mensajero/genética
19.
Acta Pharmaceutica Sinica ; (12): 2677-2684, 2023.
Artículo en Chino | WPRIM | ID: wpr-999006

RESUMEN

Chikusetsusaponin IVa (CsIVa) is a natural active monomer of triterpene saponins in the Chinese herbal medicine of Panax japonicus, which has anti-inflammatory, anti-tumor and other effects. However, its function and mechanism in triple negative breast cancer (TNBC) remain unclear. This study investigated the inhibitory effect and mechanisms of CsIVa on the proliferation of triple negative breast cancer cell line MDA-MB-231. In this study, we found that CsIVa could significantly inhibit the proliferation of MDA-MB-231 cells and eliminate its potential toxic effect on normal breast cells (MCF-10A). The transcriptome sequencing results showed that the inhibition of proliferation of MDA-MB-231 cells by CsIVa was closely related to cell cycle and the pathway regulating cell cycle. Further studies confirmed that CsIVa blocked the cell cycle in G2/M phase by down-regulating the expression of cyclin dependent kinase 1 (CDK1), cyclin B1 and up-regulating the expression of cyclin dependent kinase inhibitor 1A (p21). Moreover, CsIVa can block cell cycle through inhibiting PI3K/AKT signal pathway. In conclusion, CsIVa regulates the expression of cell cycle related proteins (p21, CDK1, cyclin B1) via inhibiting the activity of PI3K/AKT signaling pathway, blocks TNBC cell cycle, and thus exerts its anti-tumor activity.

20.
Chinese Journal of Biologicals ; (12): 947-954, 2023.
Artículo en Chino | WPRIM | ID: wpr-996564

RESUMEN

@#Objective To evaluate the effect of tyrosine kinase inhibitor BGJ398 on the proliferation,apoptosis and migration of human hepatocellular cancer Huh-7 cells and explore the mechanism.Methods The effects of 10 tyrosine kinase inhibitors on the survival of Huh-7 cells were detected by MTT assay,and the sensitivity of Huh-7 cells to BGJ398 was analyzed by single-target kinetic equation and biphasic kinetic equation respectively.Huh-7 cells were added with 10,30 and 90 nmol/L BGJ398 respectively,and the control group(without drugs)was set.The effects of BGJ398 on the apoptosis and cell cycle of Huh-7 cells were detected by flow cytometry after culturing at 37℃for 24 h,the effect on the migration ability was detected by wound healing assay and the effect on the expression of multiple pathway-related proteins was detected by Western blot.Results All of 10 tyrosine kinase inhibitors inhibited the proliferation of Huh-7 cells,among which Huh-7 cells were most sensitive to BGJ398 and the IC_(50)was(0.020±0.013)μmol/L;The response of Huh-7 cells to BGJ398 was composed of two phases with F_1 accounted for 92.8%(K_(d1)was 36 nmol/L)and F_2 accounted for 7.2%(K_(d2)>1 000μmol/L).Compared with the control group,the apoptosis rate and the percentage of Huh-7 cells in G1 phase increased significantly in 30 and 90 nmol/L BGJ398 groups(t=-6.407~-4.459,each P<0.05),while the percentage of Huh-7 cells in S phase decreased significantly in 10,30 and 90 nmol/L BGJ398 groups(t=2.982,7.859 and 12.425,respectively,each P<0.05);After 24 and 48 h of scratching,the scratch area of 30 and 90 nmol/L BGJ398groups decreased significantly(t=5.376~18.197,each P<0.05);The expression levels of phosphorylated fibroblast growth factor receptor(FGFR)and phosphorylated extracellular signal-regulated kinase 1/2(Erk1/2)protein decreased significantly in 30 and 90 nmol/L BGJ398 groups(t=4.015~6.729,each P<0.01).Conclusion BGJ398 can inhibit the proliferation and migration of human hepatocellular cancer Huh-7 cells,induce apoptosis and cell cycle arrest,which might be achieved by inhibiting FGFR phosphorylation and MAPK signaling pathway.BGJ398 is expected to be a potential agent for the treatment of hepatocellular cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA