RESUMEN
Traditional Chinese medicine(TCM) is a research area with highly original innovation features,and is also a Chinese name card to the world. However,TCM owns a unique theoretical system which is quite different from western modern medicine,leading to an awkward situation of deficient modern social identity as well as poor international spread. Therefore,how to establish a research strategy in line with the characteristics of TCM itself to systematically interpret the unique scientific connotation of TCM is always a public hot topic. Based on persistent practical exploration and scientific consideration in TCM,our group firstly promoted the concept of traditional Chinese medicine chemical biology(TCM chemical biology,TCMCB). The major idea of TCMCB is to clarify the nature of TCM regulating life progress to link TCM to modern medicine by using TCM components as chemical tools. Notably,TCMCB mainly focuses on TCM target identification and TCM-guided disease molecular mechanism exploration,further to clarify the basic law of TCM mediating disease process. Finally,TCMCB-guided scientific studies can help explain TCM theory and promote the developmentof modern innovative drugs based on identified targets using TCM active components. Moreover,TCMCB is of vital importance for investigating the scientific nature of biological progress and the pattern of disease occurrence and development,indicating a key significance for modern life science and medicine. This review introduces the definition of TCMCB as well as its academic thought,research method,technology system and scientific significance,for providing new research ideas and scientific thoughts for TCM development.
Asunto(s)
Biología , Química , Investigación Interdisciplinaria , Medicina , Medicina Tradicional China , Proyectos de InvestigaciónRESUMEN
Chemical biology is a new discipline developed in recent years, which is originated from chemistry and function as a coure to bridge medicine and biology. Chemical biology courses in Peking Union Medical College for the graduate students use the small-class teaching mode, penetrate case discussion into theory. This paper analyzes the present situation of chemical biology's course development, and summarizes the characteristics of the small-class teaching mode, as well as the practical experience of small-class teaching in the chemical biology course.
RESUMEN
Chemical biology focuses on the discovery and use of chemical compounds to understand and manipulate biological systems. It has been applied in many fields, including stem cell research. Recently, stem cell research has made significant progresses. A better understanding of stem cell biology will also promote the translation of stem cell technology in regenerative medicine. Elucidating the mechanisms governing cell fate determination and developing strategies to precisely manipulate cell fates are the fundamental issues in stem cell research. The use of small molecules to manipulate stem cell behaviors, including self-renewal, differentiation and reprogramming, has become more and more popular and offered significant advantages over conventional genetic approaches for their convenience in use, high degree of temporal control and functional diversity. In addition, based on our long-term experience in small molecular drug development, the application of chemical compounds to modulate stem cell functions in vivo for regeneration and repair could be the future direction of regenerative medicine.
RESUMEN
After thousands of years of development, traditional Chinese medicines (TCMs) have evolved into a complete scientific system characterized by multiple components, targets, and pathways, which mediates numerous pharmacological activities and efficacies. The development of "-omics" technology, including systems biology and network pharmacology, has enabled the illustration of TCMs from a more systematic view. Although the network adequately reflects the overall philosophy of TCMs, its complexity hinders the relevant research to a hover. In addition, the strategies involved appear to be in contrast to the original concise and efficacious disease therapy oriented focus on classic Chinese material medica (CMM). Based on the established holistic view and reductionism, in this review, we discuss an integrated systems biology and chemical biology research approach that will facilitate and accelerate the understanding of the mechanisms of TCMs. Furthermore, we are optimistic that it will elucidate the associated interactions between active natural products and their targets, and ultimately improve the strategies for complex disease therapies.
RESUMEN
Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites; also the biosynthetic pathways of the bio-organic-molecules were reported.
RESUMEN
Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.
RESUMEN
Chinese materia medica (CMM) defines health as the balance of whole body system and medications are designed to restore this balance. Unlike western medicine that generally uses a single chemical entity and sets a single physiological target, the efficacy herbal formulations in CMM results from complex mixtures of numerous chemical components which simultaneously interact with multiple molecular targets. CMM clinically shows the advantages over western medicine in the treatment of some multi-gene and multifactor diseases, yet the adoption of CMM stemmed from natural animals and plants in modern society is impeded by lack of quality control and absence of scientific proof of their effectiveness. Currently, the development of combinatorial medicines and system biology provide new opportunities to modernize the CMM. Thus, this review focuses on the modernization of CMM by employing the concept of combination therapy and cutting-edge biomedical technologies such as proteomics, biochip, and chemical biology. Moreover, the author puts forward the new ideas and methodologies for the discovery of modern multicomponent drugs from CMM.