Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
1.
Artículo en Chino | WPRIM | ID: wpr-1017625

RESUMEN

Digital polymerase chain reaction(dPCR)is a PCR technology that realizes accurate quantification of single-copy nucleic acid molecules by dividing the reaction system into tens of thousands of independent PCR reaction units for single-molecule-level amplification and integrating Poisson distribution.Due to its single-copy sensitivity and accurate quantification without the need of standard curves,dPCR has been widely used in disease diagnosis.By introducing technologies such as stepped emulsification and three-dimensional imaging,dPCR has been greatly improved in terms of accuracy,multiplexability and turnaround time,significantly enhancing its performance in clinical disease diagnosis.Based on this,this paper traced the technological development history of dPCR,gave an overview of its application in detection of tumors,infections and other diseases,and further discussed the challenges and opportunities of the development of dPCR,with the aim of providing a reference for the development and utilization of dPCR in the future,and promoting the high-quality development of molecular technology in clinical testing.

2.
Artículo en Chino | WPRIM | ID: wpr-1019927

RESUMEN

Objective To establish a multiplex assay method for the simultaneous detection of FluA and FluB virus(IBV)antigen based on the flow cytometry(FCM)quantum dot-encoded bead technologies,laying the foundation for the assay of multiple respiratory virus biomarkers.Methods Coupling was performed for FluA and FluB nucleoprotein(NP)monoclonal antibodies using self-made quantum dot-encoded beads,separately.FCM was used to detect known concentrations of FluA and FluB antigens separately and simultaneously,optimize the detection conditions,and establish a joint detection method for FluA and FluB antigens.Compared with the quantitative real-time PCR(qPCR)method,clinical samples were used to evaluate the clinical performance of this joint detection method.Results The joint detection method for FluA and FluB antigens was established,with detection limits of 26.1 pg/ml and 10.7 pg/ml,respectively,and measurement ranges of 15.3~250 000 pg/ml.The joint detection method for clinical sample evaluation was well correlated with the qPCR,with a positive coincidence rate of 57.4%,a negative coincidence rate of 100%,and a total coincidence rate of 71.6%.In addition,the joint detection method was superior to colloidal gold immunochromatographic strip assay commonly used in clinical practice(positive coincidence rate of 56.49%,negative coincidence rate of 99.75%).Conclusion The FCM quantum dot-encoded bead multiplex assay can be used for the joint detection of FluA and FluB antigens,which have a high sensitivity,good specificity and wide detection range.It may lay a good foundation for the multiplex detection of common respiratory viruses,and has clinical application prospects.

3.
Tianjin Medical Journal ; (12): 1-3, 2024.
Artículo en Chino | WPRIM | ID: wpr-1020960

RESUMEN

Organoids are in vitro three-dimensional(3D)multicellular cultures that are generated through deploying the self-renewal and self-organizing capacities of stem cells.They recapitulate key structural and functional features of corresponding organs or tissues,providing an ideal in vitro model and research platform for the study of developmental biology,regenerative medicine,disease modeling and drug development.The conventional organoid culture system mainly relies on manual operations with lengthy and complicated procedures,which generate organoid cultures of individual variations and batch differences,limiting their translational applications.Therefore,to engineer the organoid culture system by introducing microfluidic chip technology to enhance the throughput and automation level,is of great significance for achieving large-scale,homogeneous,and standardized organoid cultures.This article reviews the current research progress of high-throughput and automated organoid chips and discusses the main limitations and potential challenges for the future study.

4.
Artículo en Chino | WPRIM | ID: wpr-1021205

RESUMEN

BACKGROUND:In recent years,many studies have confirmed that assembloids can make up for the shortcomings of organoids,which cannot fully reproduce the interaction between cell and cell and between cell and matrix.Since the assembloids construction methods are in the early stage of development,there is no unified standard. OBJECTIVE:To review the current construction methods,applications,advantages,and disadvantages of assembloids,guide the development and improvement of vitro cell models. METHODS:PubMed,CNKI,and WanFang databases were searched with English search terms"assembloids,organoids,tumor microenvironment,organoids AND assemble,organoids AND microenvironment"and Chinese search terms"assembloids,organoids,tumor microenvironment,organoid reorganization,multicellular model".Totally 94 articles were screened out for review after excluding irrelevant articles and deduplication. RESULTS AND CONCLUSION:(1)According to the different sources of cells,the construction of assembloids can be divided into three methods:self-assembly,direct-assembly,and mixed-assembly.According to the differences of cell culture methods,it can be divided into suspension culture method,matrix culture method,organ chip culture method,and 3D bio-printing.(2)The process of self-assembly covers early stages of cell and tissue development,so it has broad prospects in the fields of organ development and developmental disorders.The function of differentiated mature cells is relatively perfect,and the assembloids directly assembled by them have more potential in the study of functional disorders and cell-damaging diseases.Self-assembly may be better in organ transplantation,and direct-assembly will be more suitable for the repair of tissue damage.Mixed-assembly combines the advantages of the former two and is mostly used to explore the physiological and pathological mechanisms of cells in the microenvironment,as well as drug screening.(3)Although different assembloids have their own advantages,they all face the problem of imperfect vasculature system,then,each method has its own limitations,for example,the degree of cell differentiation in self-assembly assembloids may still be different from that in vivo,and the fixed cell types in direct-assembly models cannot simulate complex microenvironments in vivo.These are urgent problems to be solved.(4)In the future,with the continuous improvement of assembloids culture technology,scientists can assemble biomimetic organoids with more complex tissues in vitro,providing infinitely realistic models for the study of physiological and pathological processes of human tissue and organ.

5.
Artículo en Chino | WPRIM | ID: wpr-1022837

RESUMEN

Microfluidic chip or lab-on-a-chip is a multidisciplinary cross-technology. Among them, organ-on-a-chip technology enables precise regulation of cells and microenvironment at micron level.This tecnology is expected to simulate in vivo human physiology and overcome the shortcomings of traditional animal models and cell culture techniques.In ophthalmology, organ-on-a-chip models are primarily focused on creating biomimetic models of the cornea, retina and posterior chamber to study diseases such as dry eye, glaucoma, age-related macular degeneration and diabetic retinopathy.In addition, continuous monitoring and real-time diagnosis of tear and intraocular fluid biomarkers using microfluidic chips have become a current research hot topic.The microfluidic chips also have a wide range of applications in drug analysis, drug development, and drug screening.This article reviews the recent progress and shortcomings of microfluidic chip in in vitro model construction, point-of-care testing and drug development, and discusses its future development in ophthalmology.

6.
Artículo en Chino | WPRIM | ID: wpr-1029508

RESUMEN

The immune response against infection is a multifaceted process encompassing the activation and migration of diverse immune cells, as well as the clearance of pathogens. The behaviors of immune cells and the identification of pathogens play pivotal roles as indicators for disease diagnosis and prediction. In recent years, the utilization of microfluidic chip technology has gained substantial attention within the areas of biology, pharmacology, and clinical research and diagnosis. This is primarily attributed to the numerous advantages it offers, including miniaturization, enhanced throughput, heightened sensitivity, expedited analysis, and reduced sample consumption. As a result, microfluidic technology has facilitated the development and utilization of immune cell behavioral assays, bacterial growth studies, and drug-screening assays. This paper is to review the application of microfluidic technology in the field of anti-infection immunity research, focusing on the analysis of migratory behavior of innate immune cells, deformation of their nuclei, and rapid identification of pathogenic bacteria and viruses. The primary objective of this review is to advance the application of microfluidic technology in research on both anti-infection immunity and clinical diagnosis.

7.
Artículo en Inglés | WPRIM | ID: wpr-1030528

RESUMEN

Aims@#This study aimed to detect bacterial pathogens that cause sexually transmitted diseases (STD) using multiplex polymerase chain reaction and reverse hybridization.@*Methodology and results@#Thirty urine samples were collected from male patients aged between 20 and 45 in Dohuk City who were suspected of having an STD. The samples were tested for the presence of five main types of bacteria, namely Ureaplasma urealyticum, Neisseria gonorrhoeae, Mycoplasma hominis, Mycoplasma genitalium and Chlamydia trachomatis responsible for causing STDs. Nineteen of the thirty urine samples were positive for at least one of the five species of bacteria, yielding a positive rate of 63.3%. Ureaplasma urealyticum had the highest diagnostic rate of 68.4% among positive samples, while C. trachomatis had the lowest diagnosis rate of 5.2%. Both N. gonorrhoeae and M. hominis had a 15.7% diagnosis rate, while M. genitalium had a 10.5% diagnosis rate. @*Conclusion, significance and impact of study @#Research findings suggest that U. urealyticum was the most common cause of STD, accounting for 68.4% of the positive samples. Conversely, the study identifies C. trachomatis as the least prevalent cause, accounting for only 5.2% of the cases. These noteworthy findings shed light on the prevalence of these bacterial pathogens in sexually transmitted diseases, laying the groundwork for more precise and effective diagnostic and treatment options.

8.
Chinese Journal of Trauma ; (12): 20-28, 2024.
Artículo en Chino | WPRIM | ID: wpr-1027003

RESUMEN

Objective:To construct a double-layer bone-on-a-chip containing bone matrix, with which the process of osteoblast and osteoclast differentiation in vitro is stimulated, aiming to provide a new platform for the development of osteoporosis medications. Methods:Software WorkSoild was used to design the double-layer and double-channel bone-on-a-chip and the template was fabricated by photolithography. With polydimethylsiloxane (PDMS) as the raw material, the main body of the chip was prepared by mold fabrication. The inlets and outlets of the four channels of the culture room were separated with bovine cortex bones and sealed with liquid storage columns. In the chip verification experiment, chips were divided into osteogenic and osteoclastic induction groups and osteogenic and osteoclastic control groups. In the osteogenic and osteoclastic induction groups, precursor cells of mouse embryonic osteoblast, MC3T3-E1 and mouse macrophage RAW264.7 were inoculated on the chip separately. Osteogenic induction lasted 14 days and osteoclastic induction 7 days. MC3T3-E1 cells and RAW264.7 cells were not induced in the osteogenic and osteoclastic control groups. The following indicators were observed: (1) Appearance and sealing performance of the chip: After the chip was prepared, photos were taken to observe its appearance and sealing tests were conducted to observe its sealing performance. (2) Biocompatibility: At 3 days after MC3T3-E1 cells were inoculated onto the chip and cultured and at 1, 3 and 5 days after RAW264.7 cells were inoculated onto the chip and cultured, the cell survival was observed with calcein acetoxymethyl ester/propidium iodide (AM/PI) staining and Cell Counting Kit 8 (CCK-8). (3) Osteogenic differentiation: Alkaline phosphatase (ALP) staining and alizarin red staining were performed on the cells in the osteogenic induction group to observe the osteogenic induction. RNA was collected from the osteogenic induction group and the osteogenic control group, the expression of osteoblast marker Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN) and type I collagen (COL1A1) was detected by real-time florescent quantitative PCR (qPCR), and the differentiation degree and osteogenic ability of osteoblasts were observed. (4) Osteoclast differentiation: tartrate-resistant acid phosphatase (TRAP) staining was performed on cells in the osteoclastic induction group to observe osteoclast differentiation. RNA was extracted from the osteoclastic induction group and the osteoclastic control group for qPCR of osteoclast differentiation-related genes, and the expression levels of the osteoclast marker gene TRAP, cathepsin K (CTSK) and dendritic cell specific transmembrane protein (DC-STAMP) were detected.Results:The double-layer bone-on-a-chip containing bone matrix was 3 cm×3 cm in size and transparent as a whole. The structure of the system on the chip system was compact and had no seepage. It was shown by calcein AM/PI staining that at 3 days after MC3T3-E1 cells and RAW264.7 cells were cultured, very few red fluorescent dead cells were found. CCK-8 test showed that within 5 days after being cultured, the cell viability was all above 90%, indicating that the biocompatibility of the chip was good and the cells could survive and proliferate normally. The results of ALP and alizarin red staining showed that MC3T3-E1 cells successfully differentiated into osteoblasts and produced calcified nodules in the osteogenic induction group at 14 days after the induction. The qPCR results showed that the relative expression level of RUNX2 in MC3T3-E1 cells in the osteogenic induction group was 4.98±0.74, which was significantly higher than that of the control group (0.99±0.03) ( P<0.01). The relative expression level of OCN in MC3T3-E1 cells was 7.98±0.76, which was significantly higher than that of the control group (1.00±0.06) ( P<0.01). The relative expression level of COL1A1 in MC3T3-E1 cells was 7.07±0.56, which was significantly higher than that of the control group (0.97±0.03) ( P<0.01). The TRAP staining results showed that the RAW264.7 cells in the osteoclastic induction group differentiated to giant multinucleated osteoclasts, and TRAP protein was expressed in large quantity in the osteoclasts. The results of qPCR showed that the relative expression level of TRAP in RAW264.7 cells in the osteoclastic induction group was 3.35±0.37, which was significantly higher than that of the control group (1.01±0.06) ( P<0.01). The relative expression level of CTSK in RAW264.7 cells was 3.46±0.79, which was significantly higher than that of the control group (1.01±0.05) ( P<0.01). The relative expression level of DC-STAMP in RAW264.7 cells was 1.92±0.12, which was significantly higher than that of the control group (0.98±0.08) ( P<0.01). Conclusions:The double-layer bone-on-a-chip containing bone matrix is compact in structure, can be cultured in vitro for a long time, has good biocompatibility and can be used for inducing osteogenic and osteoclast differentiation. Therefore, it is expected to provide a new research platform for exploring the mechanism of osteoporosis and medication screening.

9.
Artículo en Chino | WPRIM | ID: wpr-1038513

RESUMEN

Objective To assess the feasibility of employing chip resistors for retrospective dose reconstruction following nuclear accidents, to examine the effects of storage temperature and storage time on the optically stimulated luminescence (OSL) characteristics of the chip resistors, and to explore measures to mitigate these effects. Methods Chip resistors were analyzed using automated instruments for measuring thermoluminescence and OSL manufactured by Risø in Denmark with various parameters to understand the impact of storage temperature and storage time on OSL signals. Results The OSL signals of chip resistors exhibited exponential attenuation within 10 min after irradiation, and then stabilized (count change < 10%) within 2-7 days of storage. The chip resistors exhibited linear dose responses within 1-3 days of storage after 0.1-2 Gy irradiation. OSL signals diminished as the storage temperature increased. However, preheating at 130 ℃ for 1 min effectively eliminated the differences caused by temperatures between 25 ℃ and 45 ℃. Conclusion The OSL signals of chip resistors are influenced by storage temperature and storage time. When preheated at 130 ℃ for 1 min, chip resistors stored for 1-7 days and at 25-45 ℃ exhibited OSL signal errors of 10% or less. This result emphasizes the importance of preheating for measurements in practical applications, thus providing a scientific approach and a solid foundation for the use of chip resistors in retrospective dose reconstruction.

10.
Artículo en Chino | WPRIM | ID: wpr-1039037

RESUMEN

Ion concentration polarization (ICP) is an electrical transport phenomenon that occurs at the micro-nano interface under the action of an applied electric field, and the ICP phenomenon can be used to enrich charged particles with high efficiency. The microfluidic chip has the advantages of high precision, high efficiency, easy integration and miniaturization in biochemical analysis, which provides a new solution and technical way for biochemical analysis. In response to the demand for the detection of trace charged target analytes in sample solution, the advantages of high enrichment multiplicity, convenient operation and easy integration of ICP are utilized to provide an effective way for microfluidic biochemical detection. The combination of ICP phenomenon and microfluidic analysis technology has been widely used in the fields of pre-enrichment of charged particles, separation of targets, and detection of target analytes in biochemical analysis. In this paper, the principle of ICP and the microfluidic ICP chip are briefly introduced. Under the action of external electric field, the co-ions pass through the ion-selective nanochannel, the counterions are rejected at the boundary of nanochannel to form a depletion zone, and the charged samples will be enriched at the boundary of the depletion zone. Then the preparation techniques and methods of ICP chips are summarized. Among them, the design of microfluidic channel structure and the preparation and design of nanostructures are emphasized. The basic single-channel structure is analyzed, and the parallel-channel structure as well as the integrated multi-functional microfluidic ICP chip are sorted out and summarized. The preparation methods of nanostructures in ICP chips and their respective advantages and disadvantages are listed, and it is summarized that the current mainstream means are the embedding method and the self-assembly method, and attention is paid to the design of nanostructures preparation methods by both of them. In addition, this paper also discusses how to optimize the enrichment efficiency of ICP chip, through the introduction of multi-field coupling, valve control and other means to achieve the optimization of the enrichment efficiency of target substances. Meanwhile, this paper provides a classified overview of the progress of application of ICP chips in biochemical analysis and detection. ICP chips have been widely used in the research and development of biosensors, which can be used for the enrichment and separation of a variety of analytes including small molecules, nucleic acids, proteins, and cells, etc. By changing the design of microfluidic structures, integrating detection methods and modifying specific antibodies, ICP chips have shown great potential in the fields of rapid enrichment and pre-processing of targets, separation of targets and highly sensitive detection. Finally, it is pointed out that ICP chips are facing challenges in improving enrichment efficiency and selectivity, and solving the problems of fluid control, mixing and transport to match the biological properties of target assay, and that microfluidic ICP chips have been continuously promoting the development of ICP chips through the improvement of materials, chip design and integration of multifunctional units, opening up new possibilities in the field of biochemical analysis methods and applications. It can be seen that microfluidic ICP chips have the advantages of low sample flow rate, good separation and enrichment, high detection efficiency, and easy integration and miniaturization, which have shown good research significance and practical prospects in the field of biochemical detection.

11.
Artículo en Chino | WPRIM | ID: wpr-1039099

RESUMEN

ObjectiveAt present, the matching reagents of commercially available rapid DNA instruments based on microfluidics chip technology are autosome short tandem repeat (STR) individual identification reagents. The non-recombining part of the human Y chromosome is widely used in forensic DNA analysis, particularly in cases where standard autosomal DNA profile is uninformative. Y-STR loci are useful markers to identify males and male lineages in forensic practice. In order to achieve rapid and fully integrated detection ofY-STR loci, this study constructed the RTyper Y27 microfluidic chip rapid detection system and validated the performance of this system. MethodsThe system was verified and evaluated by sensitivity, success rate, typing accuracy, peak height balance, sizing precision and accuracy, mock case sample tests, mixture detection ability, and inhibition tolerance. ResultsComplete Y-STR profiles can be obtained when the template amount of DNA standard 9948 was ≥8 ng, the number of blood cards was ≥3 pieces, and the number of oral swab scrapings was≥7 times. The success rate of fully integrated detection was 91.52%, and the concordance rates was 99.74% for 165 testing samples. The success rate of 115 blood spots in these samples was 90.43%, with a typing accuracy of 99.65%, the success rate of 50 buccal swabs was 94%, with a typing accuracy of 99.92%. There was no significant difference in typing accuracy between blood spots and buccal swab samples. The peak height ratio between different fluorescence channels was 89.81%. The standard deviation of allelic ladder for 10 runs was within 0.5 bp. The size differences between allele and corresponding allele in allelic ladder was within 0.5 bp. The maximum precision CV values within and between batches were 0.48% and 0.68%, respectively, which were lower than 15%. These data indicate that the system has good accuracy and precision. The system was capable of accurately typing oral swabs, blood cards, saliva cards, cigarette butts, blood swabs and seminal stains. Complete Y-STR profiles can be obtained and distinguish at the 1∶3 ratio of minor and major contributors in artificial male DNA mixtures. Complete Y-STR genotyping can be obtained under the interference of inhibitors, such as different concentrations of humic acid (50-400 mg/L), indigotin (20-100 nmol/L) and hemoglobin (100-500 μmol/L). ConclusionIn this study, the RTyper Y27 microfluidic chip rapid amplification system is combined with the Quick TargSeq 1.0 integrated system, and the Y-STR profile can be obtained in approximately 2 h. Through a series of verification experiments, the results show that the system has good repeatability, accuracy and stability, can meet the on-site Y-STR detection requirements, and can be used in forensic practice.

12.
Artículo | IMSEAR | ID: sea-221342

RESUMEN

On-chip planer optical waveguide-based sources for supercontinuum (SC) generation have become highly attractive devices in the twenty-first century. Mid-IR SC sources in the 2-20 ?m wavelength region are advantageously used for gas sensing, high-sensitivity molecular detection, security, and industrial applications. These integrated photonic devices are cost-effective, scalable, and robust, and also offer more flexibility in tailoring the dispersion characteristics relative to other SC generation techniques. This article reviews the evolution of SC sources from fiber-based devices to optical waveguide-based devices and presents a historical as well as recent progress in various types of on-chip optical waveguides with physical mechanisms involved in generating coherent SC sources.

13.
Artículo en Chino | WPRIM | ID: wpr-975181

RESUMEN

Microfluidic liver and kidney chips have become preferred model carriers in recent years for new drug development, pharmacological and toxicological research, mechanism exploration, and disease model construction. In the context of the USA. Food and Drug Administration allowing the use of in vitro model data as a substitute for animal model data in new drug applications when animal disease models are difficult to construct, microfluidic chips have received widespread attention due to their high throughput, ability to highly mimic biological characteristics of living organisms, convenient evaluation of drug toxicity in normal or pathological states with repeated dosing, real-time induction and monitoring of culture processes, and real-time data acquisition and analysis. In toxicology research, liver and kidney chips can construct in vitro models suitable for the pharmacological and toxicological detection of different substances by combining 2D monocultures and co-cultures from different species sources, 3D cultures, spheroids/organoid cells, precision-cut liver and kidney slices, immortalized cell lines, or sandwich-cultured cell lines. This model maximally simulates or retains the organ function and in vivo microenvironment of the liver and kidney, including specific physiological tissue structures, multicellular interactions/crosstalk, and multi-organ coordination/feedback, to obtain results similar to or the same as in vivo experimental data, reducing interspecies differences. At the same time, it greatly reduces the use of experimental animals and lowers costs. Microfluidic technology provides necessary shear force microenvironments for the cultivation of contents and solves problems encountered in the cultivation process of liver and kidney chips, such as insufficient tissue oxygen supply, nutrient deficiencies, and accumulation of metabolites, leading to cell apoptosis and even tissue necrosis fibrosis, which make it difficult to maintain long-term structure and function. This article reviewed the application of microfluidic technology combined with liver and kidney chips in Chinese medicine toxicology research. By summarizing the development of microfluidic technology, liver chips, kidney chips, and providing application examples of microfluidic liver and kidney chips in Chinese medicine toxicology research, combined with the characteristics of Chinese medicine administration, the article explored the advantages and future development directions of their application in the field of Chinese medicine toxicology research.

14.
Acta Pharmaceutica Sinica ; (12): 1232-1244, 2023.
Artículo en Chino | WPRIM | ID: wpr-978701

RESUMEN

Human hormones at trace levels play a vital role in the regulation of a variety of functions and systems in the body, and an imbalance in hormone levels can lead to the emergence and development of diverse diseases. Therefore, the development of reliable sample pretreatment methods and sensitive and accurate analytical techniques for human hormone detection could contribute to the prevention, diagnosis and treatment of diseases, providing significant improvement for human health. Human samples which are usually used to detecting hormones, such as blood, saliva, urine and other matrix are more complex, so sample pretreatment is an important step to ensure the accuracy and reliability in the detection of hormones. In this review three common sample pretreatment methods including solid phase extraction (SPE), liquid-liquid extraction (LLE) and protein precipitation (PP) methods are discussed. Then, recent research progress in conventional techniques like liquid/gas chromatography and liquid/gas chromatography-mass spectrometry (LC/GC-MS/MS), as well as some novel strategies, such as immunoassay including chemiluminescence immunoassay (CLIA), lateral-flow immunoassay (LFIA) and time-resolved fluoroimmunoassay (TRFIA), and sensor technology including electrochemical (EC), fluorescent (FL) and surface-enhanced Raman scattering (SERS) sensors, and microfluidic chip analysis are discussed for human hormone detection. Finally, the future perspective on the use of these methods for hormone detection is considered. It is hoped to provide powerful insights to researchers for the relevant researches.

15.
Acta Pharmaceutica Sinica ; (12): 884-890, 2023.
Artículo en Chino | WPRIM | ID: wpr-978764

RESUMEN

Cardiovascular diseases are fatal threats to human health and also important fields in drug discovery. Organoid is a miniature with the structure and function similar to the organ, which is formed by the self-updating and specific differentiation of stem cells during the in vitro culture. Considering its characteristics of human origin, physical features, self-assembling and genetic stability, heart organoid has attracted much attention in the study of cardiogenesis, cardiovascular diseases modeling and related drug research. Hence, this article will review the development of heart organoids and its construction strategies, highlighting its application and prospects in drug discovery.

16.
Artículo en Chino | WPRIM | ID: wpr-980765

RESUMEN

An automatic ash-removal heat-sensitive moxibustion device was developed, which could keep relatively constant temperature of heat-sensitive moxibustion, and realize the automatic ignition and automatic ash removal of moxa sticks during heat-sensitive moxibustion. The automatic ash-removal heat-sensitive moxibustion device comprises a bracket and a moxibustion box fixed on the top of the bracket; the bracket is composed of a base and a movable telescopic arm. This device can solve the problems of temperature instability, moxa ash blocking heat transfer and moxa ash falling during heat-sensitive moxibustion, avoiding the scalding caused by moxa ash falling, and reduce the workload of medical staff.


Asunto(s)
Humanos , Calor , Moxibustión , Temperatura
17.
Artículo en Chino | WPRIM | ID: wpr-981261

RESUMEN

Objective To examine the antiplatelet effect of ticagrelor by microfluidic chip and flow cytometry under shear stress in vitro. Methods Microfluidic chip was used to examine the effect of ticagrelor on platelet aggregation at the shear rates of 300/s and 1500/s.We adopted the surface coverage of platelet aggregation to calculate the half inhibition rate of ticagrelor.The inhibitory effect of ticagrelor on ADP-induced platelet aggregation was verified by optical turbidimetry.Microfluidic chip was used to construct an in vitro vascular stenosis model,with which the platelet reactivity under high shear rate was determined.Furthermore,the effect of ticagrelor on the expression of fibrinogen receptor (PAC-1) and P-selectin (CD62P) on platelet membrane activated by high shear rate was analyzed by flow cytometry. Results At the shear rates of 300/s and 1500/s,ticagrelor inhibited platelet aggregation in a concentration-dependent manner,and the inhibition at 300/s was stronger than that at 1500/s (both P<0.001).Ticagrelor at a concentration ≥4 μmol/L almost completely inhibited platelet aggregation.The inhibition of ADP-induced platelet aggregation by ticagrelor was similar to the results under flow conditions and also in a concentration-dependent manner.Ticagrelor inhibited the expression of PAC-1 and CD62P. Conclusion We employed microfluidic chip to analyze platelet aggregation and flow cytometry to detect platelet activation,which can reveal the responses of different patients to ticagrelor.


Asunto(s)
Humanos , Ticagrelor/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Citometría de Flujo/métodos , Microfluídica , Agregación Plaquetaria
18.
Chinese Journal of Oncology ; (12): 464-470, 2023.
Artículo en Chino | WPRIM | ID: wpr-984745

RESUMEN

Conventional tumor culture models include two-dimensional tumor cell cultures and xenograft models. The former has disadvantages including lack of tumor heterogeneity and poor clinical relevance, while the latter are limited by the slow growth, low engraftment successful rate, and high cost. In recent years, in vitro three-dimensional (3D) tumor models have emerged as the tool to better recapitulate the spatial structure and the in vivo environment of tumors. In addition, they preserve the pathological and genetic features of tumor cells and reflect the complex intracellular and extracellular interactions of tumors, which have become a powerful tool for investigating the tumor mechanism, drug screening, and personalized cancer treatment. 3D tumor model technologies such as spheroids, organoids, and microfluidic devices are maturing. Application of new technologies such as co-culture, 3D bioprinting, and air-liquid interface has further improved the clinical relevance of the models. Some models recapitulate the tumor microenvironment, and some can even reconstitute endogenous immune components and microvasculature. In recent years, some scholars have combined xenograft models with organoid technology to develop matched in vivo/in vitro model biobanks, giving full play to the advantages of the two technologies, and providing an ideal research platform for individualized precision therapy for specific molecular targets in certain subtypes of tumors. So far, the above technologies have been widely applied in the field of colorectal cancer research. Our research team is currently studying upon the application of patient-derived tumor cell-like clusters, a self-assembly 3D tumor model, in guiding the selection of postoperative chemotherapy regimens for colorectal cancer. A high modeling success rate and satisfactory results in the drug screening experiments have been achieved. There is no doubt that with the advancement of related technologies, 3D tumor models will play an increasingly important role in the research and clinical practice of colorectal cancer.


Asunto(s)
Humanos , Organoides/patología , Técnicas de Cultivo de Célula , Neoplasias Colorrectales/patología , Microambiente Tumoral
19.
Artículo en Chino | WPRIM | ID: wpr-989608

RESUMEN

Objective:To analyze the mechanism of Kaixin San in treating Alzheimer disease (AD) based on the TCM integrated pharmacology platform combined with GEO chip differential gene analysis method.Methods:By searching TCMIP and Drugbank database, the active components and related molecular targets of Kaixin San were obtained. GSE4757 chip data was obtained through GEO database, and its differential genes were obtained using R language to draw heat map and volcano map. Molecular target map of differentially expressed genes between Kaixin San and AD was constructed through Cytoscape 3.7.2. Bisogenet and CytoNCA were used to draw the target topological network, and GO enrichment analysis and KEGG enrichment analysis of Kaixin San and AD gene were carried out.Results:86 active components of Kaixin San were obtained to treat AD, and 29 differential genes shared with GEO were obtained. PPI topological network was constructed. 6 core candidate genes were screened, and were merged with KEGG pathway enriched genes to obtain important genes for disease treatment, such as CHRM1, CHRM2, ACHE, CHRM3, CASP8, PTGS2, DRD1, CACN1S, ADRB1. 375 GO entries were obtained, mainly involving biological processes such as vasoconstriction, postsynaptic membrane plasticity, neurotransmitter transmission, etc. KEGG enrichment analysis mainly involved cholinergic synaptic signal pathway, cAMP signal pathway, calcium signal pathway, nerve ligand receptor interaction signal pathway, etc.Conclusions:Kaixin San shows the features of multi-component, multi-target and multi-channel in treating AD. It can play a role in the treatment of AD by inhibiting inflammatory reaction, reducing the activity of acetylcholinesterase and regulating the concentration of calciumion.

20.
Artículo en Chino | WPRIM | ID: wpr-989947

RESUMEN

Objective:To explore the prediction model of tissue chip technology for the chemotherapy response of patients with colorectal cancer.Methods:217 patients with colorectal cancer who had received standardized chemotherapy in the Affiliated People’s Hospital of Ningbo University from Jan. 2017 to Dec. 2019 were prospectively selected. The patients were randomly divided into training set (152 cases) and test set (65 cases) according to the ratio of 7:3, and were followed up for 6 months. The clinical data of the patients in the training set were compared, the expression levels of Ang-2, caspase-3 and CD147 in the patients were analyzed by tissue microarray technology, and the related factors affecting the responsiveness of colorectal cancer chemotherapy were analyzed by the Logistic regression model. R software was used based on the training set. A nomogram prediction model was built and model performance on the test set was evaluated.Results:One case was excluded from the training center, and 151 cases were finally included, including 93 cases in the chemotherapy response group and 58 cases in the chemotherapy response group. The tumor diameter, serum carcinoembryonic antigen, caspase3, Ang2 expression level, and the proportion of clinical stage IV in the poor chemotherapy group were significantly higher than those in the good chemotherapy group (all P<0.05) ; Logistic regression showed tumor diameter ( OR=2.394), serum carcinoembryonic antigen ( OR=1.878), caspase-3 ( OR=4.261), Ang-2 expression level ( OR=5.457), and clinical stage IV ( OR=5.954) were independent risk factors for adverse drug reactions in patients with colorectal cancer (all P<0.05). The consistency index (C-index) for predicting the factors related to adverse chemotherapy reactions in patients with colorectal cancer was 0.915. External verification showed that the sensitivity was 86.96%, the specificity was 92.50%, and the accuracy was 90.48% (42/65) . Conclusion:The expression levels of Ang-2 and caspase-3 are correlated with the responsiveness of colorectal cancer to chemotherapy, and can be used as predictive indicators to evaluate the responsiveness of colorectal cancer to chemotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA