Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Herbal Medicines ; (4): 19-28, 2020.
Artículo en Chino | WPRIM | ID: wpr-842043

RESUMEN

Objective: Why are different medicinal parts including heads, bodies and tails of Angelicae Sinensis Radix (ASR) distinct in pharmaceutical activities? Here we explored their discrepancy in chemical constituents and transcriptome. Methods: ASR were separated into three medicinal parts: heads (rootstocks with petiole traces of ASR), bodies (taproots of ASR) and tails (lateral roots of ASR), and chemical and transcriptomic analyses were conducted simultaneously. Results: High performance liquid chromatography (HPLC) fingerprint results showed that five widely used active ingredients (ferulic acid, senkyunolide H, senkyunolide A, n-butylphathlide, and ligustilide) were distributed unevenly in the three ASR medicinal parts. Partial least squares-discriminant analysis (PLS-DA) demonstrated that the heads can be differentiated from the two other root parts due to different amounts of the main components. However, the content of ferulic acid (a main quality marker) was significantly higher in tails than in the heads and bodies. The transcriptome analysis found that 25,062, 10,148 and 29,504 unigenes were specifically expressed in the heads, bodies and tails, respectively. WGCNA analysis identified 17 co-expression modules, which were constructed from the 19,198 genes in the nine samples of ASR. Additionally, we identified 28 unigenes involved in two phenylpropanoid biosynthesis (PB) pathways about ferulic acid metabolism pathways, of which 17 unigenes (60.7%) in the PB pathway were highly expressed in the tails. The expression levels of PAL, C3H, and CQT transcripts were significantly higher in the tails than in other root parts. RT-qPCR analysis confirmed that PAL, C3H, and CQT genes were predominantly expressed in the tail parts, especially PAL, whose expression was more than doubled as compared with that in other root parts. Conclusion: Chemical and transcriptomic analyses revealed the distribution contents and pivotal transcripts of the ferulic acid biosynthesis-related pathways. The spatial gene expression pattern partially explained the discrepancy of integral medicinal activities of three medicinal root parts.

2.
Genet. mol. biol ; 40(1): 168-180, Jan.-Mar. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-892360

RESUMEN

Abstract Red swamp crayfish is an important model organism for research of the invertebrate innate immunity mechanism. Its excellent disease resistance against bacteria, fungi, and viruses is well-known. However, the antiviral mechanisms of crayfish remain unclear. In this study, we obtained high-quality sequence reads from normal and white spot syndrome virus (WSSV)-challenged crayfish gills. For group normal (GN), 39,390,280 high-quality clean reads were randomly assembled to produce 172,591 contigs; whereas, 34,011,488 high-quality clean reads were randomly assembled to produce 182,176 contigs for group WSSV-challenged (GW). After GO annotations analysis, a total of 35,539 (90.01%), 14,931 (37.82%), 28,221 (71.48%), 25,290 (64.05%), 15,595 (39.50%), and 13,848 (35.07%) unigenes had significant matches with sequences in the Nr, Nt, Swiss-Prot, KEGG, COG and GO databases, respectively. Through the comparative analysis between GN and GW, 12,868 genes were identified as differentially up-regulated DEGs, and 9,194 genes were identified as differentially down-regulated DEGs. Ultimately, these DEGs were mapped into different signaling pathways, including three important signaling pathways related to innate immunity responses. These results could provide new insights into crayfish antiviral immunity mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA