Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biotechnology ; (12): 161-169, 2017.
Artículo en Chino | WPRIM | ID: wpr-310602

RESUMEN

Fungal diseases are the main threat to crop yield and quality, often leading to huge economic losses. Chemical fungicides are almost useless to soil-borne and vascular fungal pathogens. The most effective way is crop resistance breeding by using resistance genes. Yet, for plants lacking resistance resources, new approaches are urgently needed for crop protection. Recently, host-induced gene silencing (HIGS) is developed based on the well-known RNA interference, and already effective against viruses and pests. However, it is challenging to validate HIGS in soil-borne fungal pathogens due to uncharacterized and complicated infection processes. Recently, we have made great progresses in revealing the infection structure of Verticillium dahliae, a soil-borne and vascular fungal pathogen that leads to verticillium wilt disease to many crops, including cotton plants. Moreover, we demonstrate that cotton exports endogenous microRNAs to inhibit virulence gene expression in V. dahliae. The most exciting achievement is the successful application of HIGS in cotton plants that confer resistance to V. dahliae. All these results reveal a promising potential for applying HIGS against a wide range of soil-borne fungi.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA