Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of China Pharmaceutical University ; (6): 498-506, 2022.
Artículo en Chino | WPRIM | ID: wpr-939975

RESUMEN

@#This study aimed to isolate and identify novel toxin peptides targeting voltage-gated sodium channels (VGSGs) from the venom of the Buthus martensii Karsch (BmK) scorpion. Using G50-gel filtration, HPLC, peptide fingerprinting and amino acid sequencing, a novel sodium channel modulator, BmK M2, was identified from BMK scorpion. BmK M2 is a relatively abundant long chain polypeptide toxin in BmK scorpion venom with a molecular weight of 7 235.59, consisting of 64 amino acids and 4 pairs of disulfide bonds.Sequence alignment showed that the amino acid sequence of BmK M2 had high sequence and structural similarity to that of the discovered sodium channel toxins of BmK M1, BmK M3 and BmK M9, etc.BmK M2 is a potential new sodium channel modulator.Electrophysiological results revealed that BmK M2 can significantly enhance the activation, delay the steady-state inactivation and closed-state inactivation of Nav1.7, but has no activity on Nav1.8.BmK M2 can be used as a novel peptide probe for the study of the structure and function of Nav1.7 and the development of drugs targeting Nav1.7.

2.
Acta Pharmaceutica Sinica ; (12): 2252-2259, 2021.
Artículo en Chino | WPRIM | ID: wpr-887053

RESUMEN

italic>α7 nicotinic acetylcholine receptor (nAChR) is widely distributed in the central and peripheral nervous systems, and is closely related to a variety of neurological diseases and inflammation response. α-Conotoxin [A10L]PnIA, as an antagonist targeting α7 nAChR, plays an important role in studying the physiological and pathological processes involved in α7 nAChR. [A10L]PnIA was labeled with fluorescein 5-carboxytetramethylrhodamine, and the active peptide ([A10L]PnIA-F) was obtained by a two-step oxidative folding procedure in vitro. The Xenopus oocyte expression system and the two-electrode voltage clamp technique were used to identify the potency of [A10L]PnIA-F fluorescent peptide, and its cytotoxicity was detected by mouse macrophages and CCK8 method. The molecular weight of [A10L]PnIA-F fluorescent peptide was identified by mass spectrometry as 2 077.28 Da, which was consistent with the theoretical value. Electrophysiological determination of its half-maximal inhibitory concentration (IC50) for α7 nAChR is 17.32 nmol·L-1, which is consistent with [A10L]PnIA (IC50, 13.84 nmol·L-1). The cytotoxicity test results showed that within the concentration range of 5 nmol·L-1 to 10 μmol·L-1, there was no significant inhibition on the growth of mouse macrophages. The results showed that the α-conotoxin fluorescent probe [A10L]PnIA could provide pharmacological tools for the research of α7 nAChR-related neurophysiological and pathological mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA