Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Journal of Biomedical Engineering ; (6): 473-482, 2021.
Artículo en Chino | WPRIM | ID: wpr-888203

RESUMEN

The brain-computer interface (BCI) systems used in practical applications require as few electroencephalogram (EEG) acquisition channels as possible. However, when it is reduced to one channel, it is difficult to remove the electrooculogram (EOG) artifacts. Therefore, this paper proposed an EOG artifact removal algorithm based on wavelet transform and ensemble empirical mode decomposition. Firstly, the single channel EEG signal is subjected to wavelet transform, and the wavelet components which involve EOG artifact are decomposed by ensemble empirical mode decomposition. Then the predefined autocorrelation coefficient threshold is used to automatically select and remove the intrinsic modal functions which mainly composed of EOG components. And finally the 'clean' EEG signal is reconstructed. The comparative experiments on the simulation data and the real data show that the algorithm proposed in this paper solves the problem of automatic removal of EOG artifacts in single-channel EEG signals. It can effectively remove the EOG artifacts when causes less EEG distortion and has less algorithm complexity at the same time. It helps to promote the BCI technology out of the laboratory and toward commercial application.


Asunto(s)
Algoritmos , Artefactos , Simulación por Computador , Electroencefalografía , Procesamiento de Señales Asistido por Computador , Análisis de Ondículas
2.
Journal of Biomedical Engineering ; (6): 271-279, 2020.
Artículo en Chino | WPRIM | ID: wpr-828170

RESUMEN

Spike recorded by multi-channel microelectrode array is very weak and susceptible to interference, whose noisy characteristic affects the accuracy of spike detection. Aiming at the independent white noise, correlation noise and colored noise in the process of spike detection, combining principal component analysis (PCA), wavelet analysis and adaptive time-frequency analysis, a new denoising method (PCWE) that combines PCA-wavelet (PCAW) and ensemble empirical mode decomposition is proposed. Firstly, the principal component was extracted and removed as correlation noise using PCA. Then the wavelet-threshold method was used to remove the independent white noise. Finally, EEMD was used to decompose the noise into the intrinsic modal function of each layer and remove the colored noise. The simulation results showed that PCWE can increase the signal-to-noise ratio by about 2.67 dB and decrease the standard deviation by about 0.4 μV, which apparently improved the accuracy of spike detection. The results of measured data showed that PCWE can increase the signal-to-noise ratio by about 1.33 dB and reduce the standard deviation by about 18.33 μV, which showed its good denoising performance. The results of this study suggests that PCWE can improve the reliability of spike signal and provide an accurate and effective spike denoising new method for the encoding and decoding of neural signal.


Asunto(s)
Algoritmos , Microelectrodos , Análisis de Componente Principal , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido , Análisis de Ondículas
3.
Journal of Biomedical Engineering ; (6): 71-79, 2020.
Artículo en Chino | WPRIM | ID: wpr-788894

RESUMEN

In order to eliminate the influence of motion artifacts, high-frequency noise and baseline drift on photoplethysmographic (PPG), and to obtain the accurate value of heart rate in motion state, this paper proposed a de-noising method of PPG signal based on normalized least mean square (NLMS) adaptive filtering combining ensemble empirical mode decomposition(EEMD). Firstly, the PPG signal containing noise is passed through an adaptive filter with a 3-axis acceleration sensor as a reference signal to filter out motion artifacts. Secondly, the PPG signal is decomposed by EEMD to obtain a series of intrinsic modal function (IMF) according to the frequency from high to low. The threshold range of the signal is judged by the permutation entropy (PE) criterion, thereby filtering out the high frequency noise and the baseline drift. The experimental results show that the Pearson correlation coefficient between the calculated heart rate of PPG signal and the standard heart rate based on electrocardiogram (ECG) signal is 0.731 and the average absolute error percentage is 6.10% under different motion states, which indicates that the method can accurately calculate the heart rate in moving state and is beneficial to the physiological monitoring under the state of human motion.

4.
Journal of Biomedical Engineering ; (6): 50-58, 2019.
Artículo en Chino | WPRIM | ID: wpr-773320

RESUMEN

The precise recognition of feature points of impedance cardiogram (ICG) is the precondition of calculating hemodynamic parameters based on thoracic bioimpedance. To improve the accuracy of detecting feature points of ICG signals, a new method was proposed to de-noise ICG signal based on the adaptive ensemble empirical mode decomposition and wavelet threshold firstly, and then on the basis of adaptive ensemble empirical mode decomposition, we combined difference and adaptive segmentation to detect the feature points, A, B, C and X, in ICG signal. We selected randomly 30 ICG signals in different forms from diverse cardiac patients to examine the accuracy of the proposed approach and the accuracy rate of the proposed algorithm is 99.72%. The improved accuracy rate of feature detection can help to get more accurate cardiac hemodynamic parameters on the basis of thoracic bioimpedance.

5.
Journal of Biomedical Engineering ; (6): 280-289, 2018.
Artículo en Chino | WPRIM | ID: wpr-687634

RESUMEN

Sleep status is an important indicator to evaluate the health status of human beings. In this paper, we proposed a novel type of unperturbed sleep monitoring system under pillow to identify the pattern change of heart rate variability (HRV) through obtained RR interval signal, and to calculate the corresponding sleep stages combined with hidden Markov model (HMM) under the no-perception condition. In order to solve the existing problems of sleep staging based on HMM, ensemble empirical mode decomposition (EEMD) was proposed to eliminate the error caused by the individual differences in HRV and then to calculate the corresponding sleep stages. Ten normal subjects of different age and gender without sleep disorders were selected from Guangzhou Institute of Respirator Diseases for heart rate monitoring. Comparing sleep stage results based on HMM to that of polysomnography (PSG), the experimental results validate that the proposed noninvasive monitoring system can capture the sleep stages S1-S4 with an accuracy more than 60%, and performs superior to that of the existing sleep staging scheme based on HMM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA