Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
China Pharmacy ; (12): 2187-2191, 2022.
Artículo en Chino | WPRIM | ID: wpr-943055

RESUMEN

OBJECTIVE To separ ate and identify the flavone C-glycosides from the leaves of Dendrobium officinale ,and to evaluate their in vitro inhibitory activities to α-glucosidase. METHODS The flavone C-glycosides from the leaves of D. officinale were separated and purified by macroporous adsorption resin and preparative high -performance liquid chromatography . The structure of obtained compound was elucidated and identified by spectroscopic methods ,such as ultraviolet spectrum ,nuclear magnetic resonance,high-resolution electrospray ionization mass spectrometry ,etc. The in vitro inhibitory activities of flavone C-glycosides and positive control (acarbose)to α-glucosidase were investigated . RESULTS Five apigenin -6,8-di-C-glycosides were isolated and purified from the leaves of D. officinale,and identified as apigenin -6-C-α-L-rhamnosyl-8-C-β-D-quinovoside(1), schaftoside(2),isoschaftoside(3),isoviolanthin(4)and violanthin (5). Half inhibitory concentration of compound 1-5 and acarbose inhibiting α-glucosidase were (1.79±1.27),(2.05±0.72),(1.93±0.67),(1.09±0.46),(1.36±0.58),(18.69±1.24)μmol/L, respectively. CONCLUSIONS Five apigenin -6,8-di-C-glycosides with α-glucosidase inhibitory activity are isolated from the leaves of D. officinale,of which compound 1 is a new compound and compound 2 is isolated from this plant for the first time .

2.
China Journal of Chinese Materia Medica ; (24): 4880-4887, 2019.
Artículo en Chino | WPRIM | ID: wpr-1008177

RESUMEN

The tandem mass spectrum of apigenin-6,8-C-di-glucoside( 1) and apigenin-6-C-glucose-8-C-rhamnoside( 2) were obtained by high resolution electrospray ionization mass spectrometry( HR-ESI-MS/MS) in both positive and negative ion modes. The elemental composition of each ion was determined according to its accurate mass-to-charge,hence,the fragmentation pathways of each compound were proposed in both negative and positive ion modes. Comprehensive analysis of each ion and its proposed fragmentation pathways of the two compounds was initially conducted in both negative and positive ion mode HR-ESI-MS/MS to explore the diagnostic ions for flavone-6,8-C-di-glycosides and the characteristic ions for each compound and their cleavage rules. The results showed that a family of fragmentation ions with m/z 353,325,311,297 in ESI(-)-MS and m/z 355,325,307,295 in ESI( +)-MS could be the diagnostic ions of flavone-6,8-C-di-glycoside,and characteristic neutral loss could be assigned to glycosyl substitution,for example,neutral losses of C_4H_8O_4( 120),C_3H_6O_3( 90),C_2H_4O_2( 60) for glucoside substitution while neutral losses of C_4H_8O_3(104),C_3H_6O_2( 74),C_2H_4O( 44) for rhamnoside substitution. Furthermore,only one H_2O loss from mother ion( [M-H]-) was observed for 1 & 2 in ESI(-)-MS while five to six H2 O loss from mother ion( [M+H]+) was observed for 1 & 2 in ESI( +)-MS to produce a family of ions by subsequent loss of H_2O,which could be applied for glucosyl difference. The flavone-6,8-C-di-glycosides in both ESI( +)-MS and ESI(-)-MS showed the cleavage similarity at sugar substitutions. However,there were much more differences by the fragmentation pathways and neutral losses between ESI( +)-MS and ESI(-)-MS as following,hyperconjugation ions by subsequent loss of H_2O from precursor ions of flavone-6,8-C-di-glycosides in ESI( +)-MS were not observed in ESI(-)-MS; the subsequent neutral loss of CH_2O in ESI( +)-MS were rarely observed in ESI(-)-MS; the loss of CO only happen at C-ring of flavone ESI( +)-MS other than glycosyl position in ESI(-)-MS; the C4-chain neutral loss of flavone-6,8-C-di-glycosides happened at 8-C-glycosyl position other than at 6-C-glycosyl position. The above cleavage rules and diagnostic ions of ESI( +)-MS were successfully applied for the structure identification of 4 flavone-6 C,8 C-diglycosides from the stem extract of Dendrobium officinale as vicenin Ⅱ,vicenin Ⅰ,isoschaftoside,schaftoside as well as one flavone-O-glysoside named rutin,which were supported by ESI(-)-MS data as well.


Asunto(s)
Flavonas/química , Glicósidos/química , Iones , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
3.
Chinese Traditional and Herbal Drugs ; (24): 2588-2592, 2014.
Artículo en Chino | WPRIM | ID: wpr-854751

RESUMEN

Objective: To study the chemical constituents from 70% ethanol extract of Ziziphi Spinosae Semen. Methods: Five compounds were isolated and purified by macroporous resin D101, silica gel, Sephadex LH-20, Toyopearl HW-40, and ODS column chromatographies. Results: Five compounds (1-5) were isolated from 70% ethanol extract of Ziziphi Spinosae Semen. Their structures were identified by spectroscopic methods, as 6″, 6‴-diferuloylisospinosin (1), kaempferol-3-O-β-D-xylopyranosyl-(1→2)- [α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside (2), spinosin (3), isospinosin (4), and 6‴-feruloylspinosin (5). Conclusion: Compound 1 is a new flavone C-glycoside named 6″, 6‴-diferuloylisospinosin. Compound 2 is reported from the genus Ziziphus Mill. for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA