Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 210-217, 2023.
Artículo en Chino | WPRIM | ID: wpr-965665

RESUMEN

ObjectiveBy comparing the differences in composition and content of volatile components between Atractylodis Macrocephalae Rhizoma(AMR)and bleaching AMR, bran-fried AMR and bran-fried bleaching AMR, the effect of processing with rice-washed water on the volatile components in AMR and bran-fried AMR were investigated. MethodHeadspace gas chromatography-mass spectrometry(HS-GC-MS)was used to determine the volatile components in raw products, bran-fried products and their processed products with rice-washed water. GC conditions were programmed temperature(starting temperature of 50 ℃, rising to 140 ℃ at 10 ℃·min-1, maintained for 5 min, then rising to 210 ℃ at 4 ℃·min-1), splitting ratio of 10∶1, high purity helium as the carrier gas and a solvent delay time of 3 min. MS conditions were an electron bombardment ion source(EI) with an electron collision energy of 70 eV, ion source temperature of 230 ℃, and the detection range of m/z 20-650. The relative contents of the components were determined by the peak area normalization method, the obtained sample data were subjected to principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) by SIMCA 14.1 software, and the differential components of AMR and bleaching AMR, and bran-fried AMR and bran-fried bleaching AMR were screened according to variable importance in the projection(VIP) value>1 and P<0.05. ResultA total of 71 volatile components were identified, including 53 in AMR, 50 in bleaching AMR, 51 in bran-fried AMR, and 44 in bran-fried bleaching AMR. OPLS-DA results showed that there were significant differences between AMR and bleaching AMR, bran-fried AMR and bran-fried bleaching AMR, but not between AMR samples from different origins. The compound composition of AMR and bleaching AMR, bran-fried AMR and bran-fried bleaching AMR did not change, but the contents of monoterpenes and sesquiterpenes changed significantly. ConclusionSignificant changes in the contents of volatile components were observed in AMR and bleaching AMR, bran-fried AMR and bran-fried bleaching AMR, among them, 1,2-dimethyl-4-methylidenecyclopentene, 9,10-dehydro-isolongifolene, γ-elemene, zingiberene, atractylone, silphinene, modhephene and (1S,4S,4aS)-1-isopropyl-4,7-dimethyl-1,2,3,4,4a,5-hexahydronaphthalene can be used as candidate differential markers of volatile components of AMR before and after processing with rice-washed water.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 146-153, 2022.
Artículo en Chino | WPRIM | ID: wpr-940529

RESUMEN

ObjectiveIn order to explore the changes of chemical constituents in Plantaginis Semen before and after stir-frying, ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MSE) was used to rapidly identify and semi-quantitatively analyze the differential components in Plantaginis Semen processed at different stir-frying time. MethodWaters ACQUITY UPLC BEH C18 column (2.1 mm×100 mm, 1.8 μm) was employed with the mobile phase of 0.1% formic acid aqueous solution (A)-acetonitrile (B) for gradient elution (0-1 min, 5%-10%B; 1-2 min, 10%-15%B; 2-10 min, 15%-20%B; 10-12 min, 20%-40%B; 12-13 min, 40%-100%B; 13-14 min, 100%-5%B; 14-15 min, 5%B), the flow rate was 0.3 mL·min-1, the column temperature was 40 ℃, and the injection volume was 3 μL. Electrospray ionization (ESI) was applied for mass spectrometric analysis under positive and negative ion modes, and the scanning range was m/z 50-1 500. MarkerLynx 4.1 software was used to find the differential compounds, and the intensity of each ion peak in samples with different stir-frying time was compared to study the content variations of these compounds. ResultA total of 20 components with potential significant differences were found, among which 17 were identified and 3 were unknown, mainly including phenylethanoid glycosides, iridoid glycosides, alkaloids and others. After processing, the peak intensities of 7 compounds, such as sucrose, geniposidic acid, verbascoside and plantagoguanidinic acid A, in Plantaginis Semen decreased. The peak intensities of orobanchoside, dianthoside and plantain D increased first and then decreased during the stir-frying process. The peak intensities of 10 compounds (decaffeoylacteoside, calceolarioside A, isoacteoside, etc.) increased, and 9 of them were newly generated components. ConclusionThe content and composition of the chemical components in Plantaginis Semen changed significantly after stir-frying, which may be related to the reduction of laxative effect and the enhancement of antidiarrheal and diuretic activities of Plantaginis Semen after stir-frying.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 144-152, 2020.
Artículo en Chino | WPRIM | ID: wpr-872662

RESUMEN

Objective:To quickly analyze and identify the differential chemical compositions of Aurantii Fructus Immaturus before and after stir-frying with bran and chemical compositions of wheat bran after processing by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MSE) combined with UNIFI database screening method. Method:ACQUITY UPLC BEH C18 column (2.1 mm×100 mm, 1.7 µm) was used for chromatographic separation with 0.1% formic acid solution (A)-acetonitrile (B) as the mobile phase for gradient elution (0-11 min, 98%-70%B; 11-15 min, 70%-55%B; 15-16 min, 55%-35%B; 16-20 min, 35%-5%B; 20-20.5 min, 5%-98%B; 20.5-22 min, 98%B) at the flow rate of 0.3 mL·min-1 and the injection volume of 2 µL. The analytes were determined in positive ion mode with electrospray ionization (ESI) and data collection range of m/z 50-1 500. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to find the component differences between raw and processed products of Aurantii Fructus Immaturus, and the chemical compositions of wheat bran after processing were determined. Result:There were 64 compounds in raw products, 58 compounds in bran-fried products, and 18 compounds in wheat bran.There were 19 different components between raw and processed products of Aurantii Fructus Immaturus, mainly volatile oil, flavonoids, phenolic acid, coumarins and saponins. Conclusion:Based on the analysis of these different components before and after stir-frying with bran and the chemical compositions carried by wheat bran, the stir-frying with bran can alleviate the intensity of Aurantii Fructus Immaturus, which proves the necessity of stir-frying with bran for the processing technology of this herb, and provides a comprehensive experimental basis for research on processing mechanism of Aurantii Fructus Immaturus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA