Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Braz. J. Pharm. Sci. (Online) ; 54(1): e17347, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-951901

RESUMEN

Abstract Activity of hepatic metabolic enzymes of glucuronidation and sulfation of 4-nitrophenol (PNP) and biliary excretion of its glucuronide (PNP-G) and sulfate (PNP-S) conjugates have been investigated in control and streptozotocin (STZ)-induced diabetic rats. 500 µM PNP solution was luminally perfused in a cannulated jejunal loop for 90 minutes. It was found that biliary excretion of PNP-G was significantly decreased in the diabetic rats. This effect of STZ could be completely reversed by administration of rapid-acting insulin. Activity of hepatic UDP-glucuronyltransferase and ß-glucuronidase was also depressed by the STZ pretreatment. Administration of insulin antagonized the inhibitory action of STZ on UDP-glucuronyltransferase, but the reduced activity of ß-glucuronidase was not reversed. Biliary excretion of PNP-S was also depressed in the diabetic rats. Whereas, different effects of insulin administration were observed. Namely, the lower biliary excretion rate of PNP-S was not changed after administration of insulin. Activity of the sulfotransferase and the arylsulfatase enzymes was not altered either by STZ pretreatment or by insulin administration. Biliary excretion of PNP was also significantly depressed by STZ and this depression was not changed after insulin administration. The results call attention to hepatobiliary circulation of low molecular weight xenobiotics and their glucuronide and sulfate conjugates


Asunto(s)
Animales , Masculino , Ratas , Diabetes Mellitus Experimental/inducido químicamente , Eliminación Hepatobiliar , Estreptozocina , Eliminación Hepatobiliar/inmunología
2.
Acta Pharmaceutica Sinica ; (12): 1344-1350, 2018.
Artículo en Chino | WPRIM | ID: wpr-780006

RESUMEN

Flavonol glycoside is in clinical trials for treatment of hyperlipidemia. An accurate and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous determination of flavonol glycoside (M0), aglycone (M1) and glucuronide conjugate (M2) in rat plasma. d6-Flavonol glycoside was used as internal standard (IS). After extraction from the plasma by protein precipitation, the analytes and internal standard were separated on a XDB C18 column (50 mm×4.6 mm, 1.8 μm) using a gradient elution procedure. The mobile phase consisted of methanol and water (0.2% formic acid) at a flow rate of 0.6 mL·min−1. The total run time was 4.5 min. Positive electrospray ionization was performed using multiple reaction monitoring (MRM) with transitions of m/z 461.3 → m/z 299.1 for M0, m/z 299.1 → m/z 283.1 for M1, m/z 475.0 → m/z 299.1 for M2, and m/z 467.3 → m/z 305.1 for d6-flavonol glycoside. The method was validated and successfully applied to the pharmacokinetics study of flavonol glycoside in SD rats which were given flavonol glycoside (30 mg·kg−1) by gavage. The Cmaxof M0 is (341 ±106) ng·mL−1 and AUC0−t is (1 960 ±725) h·ng·mL−1, while the Cmaxof M2 is (1 720 ±843) ng·mL−1and AUC0−t is (8 510 ±2 920) h·ng·mL−1. The results suggest that flavonol glycoside existed mainly in the form of M0 and M2 in rats. After flavonol glycoside being hydrolyzed by the intestinal flora, it was absorbed in the form of aglycone and further metabo­lized to M2 after the first-pass effect. In this paper, the main metabolites of flavonol glycoside in rat plasma were determined for the first time, which provided a basis for the design of clinical pharmacokinetic experiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA