Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Medical Biomechanics ; (6): E375-E381, 2023.
Artículo en Chino | WPRIM | ID: wpr-987961

RESUMEN

Objective To propose a new multi-joint series venipuncture system, explore the mechanics and kinematics-based related control problems involved in needle insertion and needle picking during the puncture process, and verify feasibility of this system. Methods A puncture manipulator was built, and needle displacement control algorithm was proposed by combing with the puncture mechanics model. The the forward kinematics was calculated by using DH method, so as to obtain the tip coordinates. Then the inverse kinematics was calculated by using the geometric method. The forward and inverse processes were closely connected. The position error of the end coordinates before and after needle picking was compared by using the method of kinematics positive solution-inverse solution-re-positive solution. Finally, experimental verification and simulation were conducted by combining with the physical object. Results Through simulation and experiments, accuracy of the theoretical model was verified. The needle insertion algorithm could be used to achieve success with only one needle insertion, which provided theoretical basis for the control of robot arm. The position error before and after needle picking could be controlled within 1 mm from the end trajectory. The end needle tip of robot arm was almost kept fixed during the needle picking process. Therefore, this needle picking scheme was feasible and could basically verify that the needle picking action of robot arm met the accuracy and safety requirements. Conclusions The venipuncture manipulator truly simulates the needle insertion and needle picking action during the puncture process, and can safely and accurately realize the needle insertion and needle picking action with needle tip as the fixed point, indicating that it has certain clinical value.

2.
Chinese Journal of Medical Instrumentation ; (6): 612-616, 2023.
Artículo en Chino | WPRIM | ID: wpr-1010249

RESUMEN

At present, most of the research on hip exoskeleton robots adopts the method of decoupling analysis of hip joint motion, decoupling the ball pair motion of hip joint into rotational motion on sagittal plane, coronal plane and cross section, and designing it into series mechanism. Aiming at the problems of error accumulation and man-machine coupling in series mechanism, a parallel hip rehabilitation exoskeleton structure is proposed based on the bionic analysis of human hip joint. The structure model is established and the kinematics analysis is carried out. Through the OpenSim software, the curve of hip flexion and extension, adduction and abduction angle in a gait cycle is obtained. The inverse solution of the structure is obtained by the D-H coordinate system method. The gait data points are selected and compared with the inverse solution obtained by ADAMS software simulation. The results show that the inverse solution expression is correct. The parallel hip exoskeleton structure can meet the requirements of the rotation angle of the hip joint of the human body, and can basically achieve the movement of the hip joint, which is helpful to improve the human-computer interaction performance of the exoskeleton.


Asunto(s)
Humanos , Dispositivo Exoesqueleto , Articulación de la Cadera , Marcha , Fenómenos Biomecánicos , Simulación por Computador
3.
Journal of Biomedical Engineering ; (6): 1189-1198, 2022.
Artículo en Chino | WPRIM | ID: wpr-970658

RESUMEN

Gesture imitation is a common rehabilitation strategy in limb rehabilitation training. In traditional rehabilitation training, patients need to complete training actions under the guidance of rehabilitation physicians. However, due to the limited resources of the hospital, it cannot meet the training and guidance needs of all patients. In this paper, we proposed a following control method based on Kinect and NAO robot for the gesture imitation task in rehabilitation training. The method realized the joint angles mapping from Kinect coordination to NAO robot coordination through inverse kinematics algorithm. Aiming at the deflection angle estimation problem of the elbow joint, a virtual space plane was constructed and realized the accurate estimation of deflection angle. Finally, a comparative experiment for deflection angle of the elbow joint angle was conducted. The experimental results showed that the root mean square error of the angle estimation value of this method in right elbow transverse deflection and vertical deflection directions was 2.734° and 2.159°, respectively. It demonstrates that the method can follow the human movement in real time and stably using the NAO robot to show the rehabilitation training program for patients.


Asunto(s)
Humanos , Extremidad Superior , Robótica/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Articulación del Codo , Modalidades de Fisioterapia , Fenómenos Biomecánicos
4.
Chinese Journal of Rehabilitation Theory and Practice ; (12): 1464-1470, 2020.
Artículo en Chino | WPRIM | ID: wpr-905338

RESUMEN

Objective:To solve the movement mode adapting to individual differences for the trajectory planning of lower limb rehabilitation robots. Methods:After summarizing the six movement modes of the lower limb rehabilitation robot, according to the multi-rigid body theory of the human body, the exoskeleton of the lower limb rehabilitation robot was simplified into a two-bar linkage mechanism, the inverse kinematics analysis of the motion mode was performed, and the motion pattern solving system was designed based on C#. Results:The motion mode joint angle value calculated based on the C# motion mode solving system was transmitted to the upper computer, and the six motion modes were successfully applied to the lower limb rehabilitation robot. Through the inversion kinematics analysis of the motor model, the C#-designed motion mode solving system could solve the motorized joint angle values that adapted to individual of different leg lengths with lower extremity motor dysfunction. Through physical prototype experiments, the lower limb rehabilitation robot could drive the human body model for rehabilitation training according to the planned exercise mode. The actual joint angle curve and the theoretical joint angle curve were basically coincident, the joint angle error was small. Conclusion:The individual difference motion pattern solution is valid and feasible.

5.
Journal of Medical Biomechanics ; (6): E608-E614, 2019.
Artículo en Chino | WPRIM | ID: wpr-802401

RESUMEN

Objective To establish a personalized musculoskeletal multi-body dynamics model of total knee replacement (TKR) by two software nmsBuilder and OpenSim, and verify this established model by using bouncy and medthrust gait patterns. Methods Based on skeletal data from a patient, the body, skeletal landmark clouds and muscular landmark clouds were established for automatically generating reference systems and muscles. The musculoskeletal model generated by nmsBuilder was introduced into OpenSim, and inverse kinematics, static optimization and knee joint force analysis were performed successively. Finally, the model was driven by bouncy gait and medthrust gait respectively, and the results were compared with experimental measurements. Results Except for the lateral joint contact forces, the predicted magnitude and trend of knee joint contact forces by the model had a good agreement with the experimental data, and the constructed skeletal muscle multi-body dynamics model could be used for knee joint research. Conclusions The established musculoskeletal multi-body dynamics model could predict the medial, lateral and total tibiofemoral joint contact forces simultaneously by inputting the marker positions and the ground reaction forces. The research ideas of this study can provide references for designing personalized knee prostheses for TKR patient.

6.
Journal of Medical Biomechanics ; (6): E171-E177, 2013.
Artículo en Chino | WPRIM | ID: wpr-804207

RESUMEN

Objective To establish a new trajectory tracking algorithm combined with trapezoidal velocity, so as to realize the trajectory control of the assistive standing-up robot and help subjects complete the standing-up training. Methods Forces of the assistive standing-up robot acting on subjects were analyzed by deducing the force and moment balance equations. According to the interpolation points of the target curve, trapezoidal velocity and current position points of the end-effector, the trajectory tracking algorithm of the assistive standing-up robot was developed, and a simulation platform was built up by Simulink/Stateflow software. Based on the established Xpc target and host computer, assistive standing-up robot and 3D motion analysis system, trajectory tracking of the straight line, curves in different shapes, standing-up curve of the subjects were tested. Parameters that affected the velocity and accuracy of trajectory tracking as well as the differences in trapezoidal velocity and standing-up velocity were discovered. Results Accurate positon control of the assistive standing-up robot was achieved by trajectory tracking algorithm. The standing-up trajectory curve and trapezoidal velocity could meet the requirement of standing-up velocity for the subjects and fulfill their requirements for different curve shapes and velocities. Conclusions The assistive standing-up robot using trajectory tracking algorithm combined with trapezoidal velocity can accurately track the target curves without limitation of curve shapes, and help the standing-up training for subjects. The established simulation and test platform in consideration of different subjects’ standing-up trajectory curve, velocity and accelaraion will assist standing-up more effectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA