Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Pharmacology and Toxicology ; (6): 764-765, 2021.
Artículo en Chino | WPRIM | ID: wpr-909597

RESUMEN

OBJECTIVE To evaluate the effects of flavonoids from Xindakang (Hippophae Fructus flavone) on myo?cardial systolic and diastolic functions of isolated frog hearts and explore the possible mechanism, and provide experi?mental basis for improving the effect and efficacy of Xindakang on cardiac function. METHODS The isolated frog heart perfusion specimens were prepared by Yagi's method, and the effects of different concentrations of Xindakang on myo?cardial contractility (0.0125, 0.025, 0.05, 0.1 and 0.2 g·L-1), heart rate and cardiac output of isolated frog heart were stud?ied. Acetylcholine, atropine and epinephrine were administered successively to analyze the effects of Xindakang on car?diac systolic function of isolated frogs under the action of different drugs, and compared with propranolol. The effect of extracellular calcium ion concentration on the action of Xindakang was studied by using low calcium concentration, high cal?cium concentration and normal Ren's solution. To study the effect and possible mechanism of Xindakang on cardiac systolic function of frog. RESULTS The concentration of Xindakang in the range of 0.0125-0.1 g·L-1 could weaken the contractility of isolated frog heart and increase the concentration of Xindakang. The inhibitory effect of Xindakang on con?tractility of isolated frog heart was enhanced, and showed obvious dose-effect relationship. Cardiac output was signifi?cantly decreased by Xindakang (P<0.01), slow heart rate (P<0.05); M receptor blocker atropine could not antagonize the contractile effect of Xindakang, and Xindakang could not completely antagonize the contractile effect of adrenalin. Xindakang could inhibit the isolated frog heart in low calcium concentration, high calcium concentration and normal Ren's solution, and increased with the increase of extracellular calcium concentration (P<0.01). CONCLUSION Xinda?kang has inhibitory effect on isolated frog heart, which may be achieved by blocking the calcium channel on myocardial cell membrane and reducing the calcium concentration in myocardial cells.

2.
China Pharmacy ; (12): 2650-2655, 2019.
Artículo en Chino | WPRIM | ID: wpr-817497

RESUMEN

OBJECTIVE: To study the effects of ethyl acetate part form the ethanol extract of Periploca forrestii on cardiac function of isolated frog heart, and to primarily investigate its potential mechanism. METHODS: The isolated frog heart samples were prepared by using the intube method of steinmann. The Ren’s solution (blank control), 1.70 mg/mL and 3.48 mg/mL ethyl acetate part from ethanol extract of P. forrestii were used to perfuse the sample. The BL-420 biological function experimental system was used to record the changes in heart rate and myocardial contractility. The effects of ethyl acetate part from ethanol extract of P. forrestii on cardiac function of isolated frog heart were investigated. After perfused with 10 mg/L atropine, 20 μL isoproterenol, 1 μL low calcium (per 1 000 mL pure water contain 0.06 g CaCl2), high calcium Ren’s solution (per 1 000 mL pure water contain 0.24 g CaCl2), adding 1.74 mg/mL ethyl acetate part from ethanol extract of P. forrestii, the changes of myocardial contractility in isolated hearts were recorded by BL-420 biological function experimental system. Myocardial tissue was collected after perfused with Ren’s solution (blank control) and ethyl acetate part from ethanol extract of P. forrestii with 1.74 and 3.48   mg/mL. The activity of Na+-K+-ATPase, Ca2+-Mg2+-ATPase and AChE were detected to investigate the potential mechanism of the effects of ethyl acetate extract from ethanol extract of P. forrestii on cardiac function. RESULTS: Compared with blank control, mean myocardial contractility was significantly decreased (P<0.001) after adding 1.74, 3.48 mg/mL ethyl acetate part form ethanol extract of P. forrestii, but had no significant on heart rate (P>0.05). With the increase of extracellular Ca2+ concentration, the inhibitory effect of ethyl acetate part from ethanol extract of P. forrestii on isolated frog heart contraction also increased gradually. After adding atropine and isoproterenol, the inhibitory effect of the ethyl acetate part form ethanol extract of P. forrestii on isolated frog heart contraction decreased to some certain. The activity of Na+-K+-ATPase in cardiac tissue was not significantly changed (P>0.05), the activity of Ca2+-Mg2+-ATPase was significantly increased (P<0.05), and the activity of AChE was significantly decreased (P<0.05) after perfused with 1.74, 3.48 mg/mL ethyl acetate part form ethanol extract of P. forrestii. CONCLUSIONS: The ethyl acetate part from the ethanol extract of P. forrestii can inhibit the contractile activity of the isolated frog heart and has a certain negative inotropic effect. The mechanism may be related to the increase of Ca2+-Mg2+-ATPase activity, inhibition of AChE activity, blocking of calcium channel in the cell membrane, the activation of M receptor and blocking of β receptor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA