Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biotechnology ; (12): 3451-3463, 2023.
Artículo en Chino | WPRIM | ID: wpr-1007969

RESUMEN

Yeast autolysis affects the flavor and quality of beer. The regulation of yeast autolysis is a need for industrial beer production. Previous studies on brewer's yeast autolysis showed that the citric acid cycle-related genes had a great influence on yeast autolysis. To explore the contribution of isocitrate dehydrogenase genes in autolysis, the IDP1 and IDP2 genes were destroyed or overexpressed in typical lager yeast Pilsner. The destruction of IDP1 gene improved the anti-autolytic ability of yeast, and the anti-autolytic index after 96 h autolysis was 8.40, 1.5 times higher than that of the original strain. The destruction of IDP1 gene increased the supply of nicotinamide adenine dinucleotide phosphate (NADPH) and the NADPH/NADP+ ratio was 1.94. After fermentation, intracellular ATP level was 1.8 times higher than that of the original strain, while reactive oxygen species (ROS) was reduced by 10%. The destruction of IDP2 gene resulted in rapid autolysis and a decrease in the supply of NADPH. Anti-autolytic index after 96 h autolysis was 4.03 and the NADPH/NADP+ ratio was 0.89. After fermentation, intracellular ATP level was reduced by 8% compared with original strain, ROS was 1.3 times higher than that of the original strain. The results may help understand the regulation mechanism of citric acid cycle-related genes on yeast autolysis and provide a basis for the selection of excellent yeast with controllable anti-autolytic performance.


Asunto(s)
Humanos , Isocitrato Deshidrogenasa/genética , NADP , Especies Reactivas de Oxígeno , Autólisis , Adenosina Trifosfato
2.
Chinese Journal of Biotechnology ; (12): 4373-4381, 2021.
Artículo en Chino | WPRIM | ID: wpr-921513

RESUMEN

Lager yeast is the most popular yeast strain used for beer production in China. The flocculation of yeast plays an important role in cell separation at the end of fermentation. Therefore, appropriately enhancing the flocculation capability of the lager yeast without affecting its fermentation performance would be desirable for beer industry. Our previous study showed that the defect of gene RIM21 might contribute to the enhanced flocculation capability of a lager yeast G03. To further investigate the role of the RIM21 gene in flocculation of strain G03, this study constructed a RIM21-deleted mutant strain G03-RIM21Δ through homologous recombination. Deletion of RIM21 improved the flocculation capability of strain G03 during wort fermentation at 11 °C without changing its fermentation performance significantly. The expression of FLO5, Lg-FLO1 and some other genes involved in cell wall integrity pathway were up-regulated in strain G03-RIM21Δ. In addition, the disruption of RIM21 enhanced resistance of yeast cells to cell wall inhibitors. These results provide a basis for elucidating the flocculation mechanism of lager yeast under low-temperature fermentation conditions.


Asunto(s)
Cerveza , Fermentación , Floculación , Receptores de Superficie Celular , Saccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Chinese Journal of Biotechnology ; (12): 1059-1070, 2019.
Artículo en Chino | WPRIM | ID: wpr-771822

RESUMEN

The autolysis of brewer's yeast seriously affects the quality of beer and the quality of yeast is considered as one of the key factors in beer brewing. Previous studies on brewer's yeast autolysis showed that RLM1 gene, an important transcription factor in cell integrity pathway, is closely related to the autolysis of yeast. In this study, RLM1 was knocked out and overexpressed in a haploid brewer's yeast. RLM1 disruption resulted in poor anti-autolysis performance of yeast, whereas overexpression of RLM1 contributed to the anti-autolytic ability of yeast. In addition, RLM1 gene knockout affected the osmotic stress resistance, cell wall damage resistance, nitrogen starvation resistance and temperature tolerance of yeast strain. The transcriptional level of GAS1 involved in cell wall assembly and DNA damage response was regulated along with the expression of RLM1, whereas other genes in CWI pathway did not show apparent regularity. RLM1 might mainly affect the expression of GAS1 so as to improve the stress resistance of lager yeast in harsh environment. The result from this study help further understand the mechanism of yeast autolysis and lay a foundation for breeding brewer's yeast strain with better anti-autolytic ability.


Asunto(s)
Humanos , Autólisis , Cerveza , Pared Celular , Proteínas de Dominio MADS , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA