Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros








Intervalo de año
1.
China Journal of Chinese Materia Medica ; (24): 5049-5055, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008675

RESUMEN

This study aimed to explore the effect and mechanism of acetylalkannin from Arnebia euchroma on the proliferation, migration, and invasion of human melanoma A375 cells. A375 cells were divided into a blank group, and low-, medium-, and high-dose acetylalkannin groups(0.5, 1.0, and 2.0 μmol·L~(-1)). The MTT assay was used to detect cell proliferation. Cell scratch and transwell migration assays were used to detect cell migration ability, and the transwell invasion assay was used to detect cell invasion ability. Western blot was used to detect the protein expression of migration and invasion-related N-cadherin, vimentin, matrix metalloproteina-se-9(MMP-9), and Wnt/β-catenin pathway-related Wnt1, Axin2, glycogen synthase kinase-3β(GSK-3β), phosphorylated GSK-3β(p-GSK-3β), β-catenin, cell cycle protein D_1(cyclin D_1), and p21. Real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR) was used to detect the mRNA expression of E-cadherin, matrix metalloproteinase-2(MMP-2), N-cadherin, vimentin, β-catenin, snail-1, and CD44. MTT results showed that the cell inhibition rates in the acetylalkannin groups significantly increased as compared with that in the blank group(P<0.01). The results of cell scratch and transwell assays showed that compared with the blank group, the acetylalkannin groups showed reduced cell migration and invasion, and migration and invasion rates(P<0.05, P<0.01) and weakened horizontal and vertical migration and invasion abilities. Western blot results showed that compared with the blank group, the high-dose acetylalkannin group showed increased expression of Axin2 protein(P<0.05), and decreased expression of N-cadherin, vimentin, MMP-9, Wnt1, p-GSK-3β, β-catenin, cyclin D_1, and p21 proteins(P<0.05, P<0.01). The expression of GSK-3β protein did not change significantly. PCR results showed that the overall trend of MMP-2, N-cadherin, vimentin, β-catenin, snail-1, and CD44 mRNA expression was down-regulated(P<0.01), and the expression of E-cadherin mRNA increased(P<0.01). Acetylalkannin can inhibit the proliferation, migration, and invasion of human melanoma A375 cells, and its mechanism of action may be related to the regulation of Wnt/β-catenin signaling pathway.


Asunto(s)
Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , beta Catenina/metabolismo , Vimentina/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Línea Celular Tumoral , Vía de Señalización Wnt , Cadherinas/genética , Melanoma/genética , Ciclina D/metabolismo , Proliferación Celular , Boraginaceae/genética , ARN Mensajero , Movimiento Celular
2.
Chinese Traditional and Herbal Drugs ; (24): 658-662, 2018.
Artículo en Chino | WPRIM | ID: wpr-852220

RESUMEN

Objective To study the effects and the mechanism of oridonin on inhibiting the invasion and migration abilities of human melanoma A375 cells. Methods Human melanoma A375 cells were cultured and treated respectively with indicated concentrations of oridonin by cell culture technique. The proliferation rate was detected by CCK-8 method. The migration ability was measured by wound healing assay. The invasion ability was examined by Transwell assay. The adhesion capabilities were evaluated by adhesion assay. The epithelial-mesenchymal transition (EMT) and matrix metalloproteinases (MMPs) related protein expression levels were determined by Western blotting. Results CCK-8 assay showed the median inhibition concentration (IC50) of 48 h was 47.94 μmol/L. Oridonin (5, 10, and 20 μmol/L) inhibited the migration, invasion and adhesion abilities of human melanoma A375 cells in a dose-dependent manner (P < 0.05). After oridonin treatment, the protein expression levels of E-cadherin increased significantly (P < 0.05) and the protein levels of Snail, N-cadherin, vimentin, MMP-2, and MMP-9 decreased significantly (P < 0.05). Conclusion Oridonin inhibits the migration, invasion and adhesion abilities of human melanoma A375 cells. The mechanism may be related with the regulating effects of oridonin on EMT and MMPs.

3.
China Pharmacy ; (12): 3941-3945, 2017.
Artículo en Chino | WPRIM | ID: wpr-662035

RESUMEN

OBJECTIVE:To study the effect and mechanism of physcion 8-O-β-glucopyranoside(PG)on the apoptosis of skin melanoma A375 cells. METHODS:After A375 cells were treated by PG with 0,10,20,50 μg/mL for 24,48,72 h,CCK-8 method was adopted to determine the survival rate of cells. After A375 cells were treated by PG with 0(control),20,50 μg/mL for 48 h,flow cytometry was used to detect the apoptosis rate of cells with membrane protein Ⅴ/propidium iodide (PI) double staining. Immunoblotting was used to detect the protein expressions of Caspase-3 and polyadenyl adenine diphosphate ribose poly-merase (PARP) and protein expressions of cytochrome C inside and outside mitochondria. After A375 cells were treated by PG with 0 (control),5,10 μmol/L for 48 h,enzyme substrate method was used to determine the activities of Caspase-8 and Cas-pase-9. RESULTS:PG can effectively decrease the survival rate of A375 cells. Compared with control,apoptosis rate of cells was obviously increased after treated by PG with 20,50 μg/mL(P<0.01);protein expressions of Caspase-3,PARP in cells and cyto-chrome C in cell matrix were obviously enhanced(P<0.05 or P<0.01);and protein expression of cytochrome C in mitochondria was obviously weakened(P<0.05 or P<0.01). Caspase-9 activity in cells was obviously enhanced after treated by PG with 5,10μmol/L(P<0.05 or P<0.01);and Caspase-8 activity had no obvious changes. CONCLUSIONS:PG can inhibit activity of A375 cells and promote its apoptosis,and its pro-apoptotic effects is achieved by destructing mitochondrial membrane potential and pro-moting cytochrome C outflow.

4.
China Pharmacy ; (12): 3941-3945, 2017.
Artículo en Chino | WPRIM | ID: wpr-659261

RESUMEN

OBJECTIVE:To study the effect and mechanism of physcion 8-O-β-glucopyranoside(PG)on the apoptosis of skin melanoma A375 cells. METHODS:After A375 cells were treated by PG with 0,10,20,50 μg/mL for 24,48,72 h,CCK-8 method was adopted to determine the survival rate of cells. After A375 cells were treated by PG with 0(control),20,50 μg/mL for 48 h,flow cytometry was used to detect the apoptosis rate of cells with membrane protein Ⅴ/propidium iodide (PI) double staining. Immunoblotting was used to detect the protein expressions of Caspase-3 and polyadenyl adenine diphosphate ribose poly-merase (PARP) and protein expressions of cytochrome C inside and outside mitochondria. After A375 cells were treated by PG with 0 (control),5,10 μmol/L for 48 h,enzyme substrate method was used to determine the activities of Caspase-8 and Cas-pase-9. RESULTS:PG can effectively decrease the survival rate of A375 cells. Compared with control,apoptosis rate of cells was obviously increased after treated by PG with 20,50 μg/mL(P<0.01);protein expressions of Caspase-3,PARP in cells and cyto-chrome C in cell matrix were obviously enhanced(P<0.05 or P<0.01);and protein expression of cytochrome C in mitochondria was obviously weakened(P<0.05 or P<0.01). Caspase-9 activity in cells was obviously enhanced after treated by PG with 5,10μmol/L(P<0.05 or P<0.01);and Caspase-8 activity had no obvious changes. CONCLUSIONS:PG can inhibit activity of A375 cells and promote its apoptosis,and its pro-apoptotic effects is achieved by destructing mitochondrial membrane potential and pro-moting cytochrome C outflow.

5.
Chinese Journal of Immunology ; (12): 1000-1004, 2017.
Artículo en Chino | WPRIM | ID: wpr-616462

RESUMEN

Objective:To investigated the activity inhibition and inhibitory type of polyphenol oxidase (PPO) induced by galangin and the interaction mechanism of galangin with polyphenol oxidase was preliminarily indicated,and prove the related mechanism of galangin on proliferation of on human melanoma A375 cells.Methods: The activity inhibition and inhibitory type of PPO induced by galangin were investigated by spectrophotometric method,and interation mechanism of galangin with PPO was preliminarily indicated by fluorescence quenching and molecular docking,and chelating copper ions with the inhibitory mechanism of galangin on polyphenol oxidase was measured.Results: Galangin was a competitive inhibitor,the IC50 and Ki on PPO were obtained to be (47.86±3.33) and (24.83±1.45)μmol/L,respectively.Fluorescence spectrum indicated the fluorescence of PPO was quenched effectively by galangin and the binding constant Ka was obtained to be (4.67±0.43)×104 L/mol.Chelating copper ions and molecular simulation further showed that galangin was combined with active center of copper ions,and formed hydrogen bonds with catalytic site His259.Luteolin could induce the apoptosis of A375 cells significantly,and the tyrosinase activity and melanin synthesis were decreased.Conclusion: Galangin as a competitive polyphenol oxidase inhibitor and reduced the activity of polyphenol oxidase.which provides the theoretical basis for the clinical anti skin cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA