Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biotechnology ; (12): 604-614, 2021.
Artículo en Chino | WPRIM | ID: wpr-878585

RESUMEN

Proton-pumping rhodopsin (PPR) is a simple photosystem widely distributed in nature. By binding to retinal, PPR can transfer protons from the cytoplasmic to the extracellular side of the membrane under illumination, creating a proton motive force (PMF) to synthesize ATP. The conversion of light into chemical energy by introducing rhodopsin into nonphotosynthetic engineered strains could contribute to promoting growth, increasing production and improving cell tolerance of microbial hosts. Gloeorhodopsin (GR) is a PPR from Gloeobacter violaceus PCC 7421. We expressed GR heterologously in Escherichia coli and verified its functional activity. GR could properly function as a light-driven proton pump and its absorption maximum was at 539 nm. We observed that GR was mainly located on the cell membrane and no inclusion body could be found. After increasing expression level by ribosome binding site optimization, intracellular ATP increased, suggesting that GR could supply additional energy to heterologous hosts under given conditions.


Asunto(s)
Cianobacterias/metabolismo , Escherichia coli/metabolismo , Bombas de Protones , Rodopsina/metabolismo , Rodopsinas Microbianas/metabolismo
2.
Acta Pharmaceutica Sinica B ; (6): 1426-1439, 2020.
Artículo en Inglés | WPRIM | ID: wpr-828798

RESUMEN

The membrane protein claudin-3 (CLDN3) is critical for the formation and maintenance of tight junction and its high expression has been implicated in dictating malignant progression in various cancers. However, the post-translational modification of CLDN3 and its biological function remains poorly understood. Here, we report that CLDN3 is positively correlated with ovarian cancer progression both and Of interest, CLDN3 undergoes -palmitoylation on three juxtamembrane cysteine residues, which contribute to the accurate plasma membrane localization and protein stability of CLDN3 Moreover, the deprivation of -palmitoylation in CLDN3 significantly abolishes its tumorigenic promotion effect in ovarian cancer cells. By utilizing the co-immunoprecipitation assay, we further identify ZDHHC12 as a CLDN3-targating palmitoyltransferase from 23 ZDHHC family proteins. Furthermore, the knockdown of ZDHHC12 also significantly inhibits CLDN3 accurate membrane localization, protein stability and ovarian cancer cells tumorigenesis Thus, our work reveals -palmitoylation as a novel regulatory mechanism that modulates CLDN3 function, which implies that targeting ZDHHC12-mediated CLDN3 -palmitoylation might be a potential strategy for ovarian cancer therapy.

3.
Chinese Journal of Biotechnology ; (12): 1537-1545, 2019.
Artículo en Chino | WPRIM | ID: wpr-771775

RESUMEN

Exosomes have many advantages as natural drug delivery carriers, but their application is limited by the inefficient loading of intracellular drugs (such as proteins and nucleic acids). In this study, mCherry, a red fluorescent protein, was used as the endogenous cargo target. Through gene modification of donor cells and fusion expression of membrane localization elements (PB, CAAX, Palm and CD63), mCherry was specifically sorted into exosomes through biogenesis. Results show that CD63 had the highest sorting efficiency, followed by Palm. PB and CAAX led enrichment of mCherry on the plasma membrane, but not in exosomes. The approach provides an alternative to facilitate packaging of cargo by exosomes and thus to increase the efficient delivery of endogenous protein drugs.


Asunto(s)
Humanos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Exosomas , Células HEK293 , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA