Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo en Chino | WPRIM | ID: wpr-973569

RESUMEN

Objective To optimize the Marinelli beaker with the simulation of Laboratory Sourceless Object Calibration Software (LabSOCS), to investigate the detection efficiency of HPGe detector in measuring noble gas, and to provide a reference for the measurement and optimization of noble gas effluent from nuclear power plants. Methods LabSOCS was used to establish a Marinelli beaker model to investigate the relationship of gamma ray detection efficiency of noble gas with gas components, gas density, size and volume of the Marinelli beaker, and the shape of source container. Results The gas components had little effect on the detection efficiency of the noble gas in the Marinelli beaker. The gas density had a relatively great effect on the detection efficiency of low-energy gamma ray. The Marinelli beaker of appropriate height and radius enabled the HPGe detector to get better measurement results. For the BE5030 HPGe detector, the highest detection efficiency of the Marinelli beakers of different volumes were observed at the location where the radius/height ratio was 0.7, and the optimal values of height and radius were given for the Marinelli beakers of different volumes. Conclusion Choosing Marinelli beaker of the appropriate size can improve the detection efficiency of noble gas in the effluent from nuclear power plants.

2.
Artículo en Japonés | WPRIM | ID: wpr-375150

RESUMEN

  In Japan, the Hot Springs Law and the Guideline of Analytical Methods of Mineral Springs (revised) classify springs containing 74 Bq/kg of radon as “hot springs” and those with radon levels exceeding 111 Bq/kg as “medical springs” called “radioactive spring”. Radon is a noble gas that easily diffuses in air.<BR>  This study evaluates exposure dose due to radon when using a radioactive spring at a spa in the Toriido area, Komono town, Mie district, Mie prefecture.<BR>  After bath water was supplied through a pipe from hot spring storage tanks to bathtubs, only 5.3-18.0% of radon remained in the water. Two days later, only 0.3-0.4% of the radon remained in the bath water due to radioactive decay and diffusion into air being increased by bathing and recirculation filtering.<BR>  The calculated effective dose from bathing in radioactive hot spring was 2.8-12.0 nSv, and that from drinking radioactive hot spring water was 5.1-23.3 nSv. To determine the total effective dose from use of the hot spring facility that may effects on human health, it is necessary to analyze radon concentrations not only in the water but also the surrounding air.

3.
Artículo en Japonés | WPRIM | ID: wpr-689141

RESUMEN

  In Japan, the Hot Springs Law and the Guideline of Analytical Methods of Mineral Springs (revised) classify springs containing 74 Bq/kg of radon as “hot springs” and those with radon levels exceeding 111 Bq/kg as “medical springs” called “radioactive spring”. Radon is a noble gas that easily diffuses in air.   This study evaluates exposure dose due to radon when using a radioactive spring at a spa in the Toriido area, Komono town, Mie district, Mie prefecture.   After bath water was supplied through a pipe from hot spring storage tanks to bathtubs, only 5.3-18.0% of radon remained in the water. Two days later, only 0.3-0.4% of the radon remained in the bath water due to radioactive decay and diffusion into air being increased by bathing and recirculation filtering.   The calculated effective dose from bathing in radioactive hot spring was 2.8-12.0 nSv, and that from drinking radioactive hot spring water was 5.1-23.3 nSv. To determine the total effective dose from use of the hot spring facility that may effects on human health, it is necessary to analyze radon concentrations not only in the water but also the surrounding air.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA