Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Chinese Journal of Biotechnology ; (12): 4950-4964, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008071

RESUMEN

Molting is an important physiological phenomenon of many metamorphosis insects, during which the old and new epidermis are separated by enzymes present in the molting fluid. Various proteomic studies have discovered the presence of Bombyx mori carboxypeptidase A (Bm-CPA) in the molting fluid of silkworm, but its function remains unclear. In order to better understand the role of Bm-CPA in the molting process of silkworm, Bm-CPA was analyzed by bioinformatics analysis, real-time fluorescence quantitative PCR, antibody preparation, immunofluorescence staining, and expression in Pichia pastoris. The results showed that Bm-CPA had a conserved M14 zinc carboxypeptidase domain and glycosylation site. Its expression was regulated by ecdysone 20E, and large expression was observed in the epidermis of the upper cluster stage. Immunofluorescence staining showed that Bm-CPA was enriched in the epidermis during the molting stage, and the inhibitor of Bm-CPA led to the larval death due to the inability to molt. We also successfully obtained a large number of recombinant Bm-CPA proteins by Pichia pastoris expression in vitro. These results may facilitate further understanding the molting development process of silkworm.


Asunto(s)
Animales , Muda/genética , Bombyx/genética , Carboxipeptidasas A/metabolismo , Proteómica , Larva/metabolismo , Técnica del Anticuerpo Fluorescente , Proteínas de Insectos/metabolismo
2.
Chinese Journal of Microbiology and Immunology ; (12): 520-526, 2022.
Artículo en Chino | WPRIM | ID: wpr-958220

RESUMEN

Objective:To effectively express the receptor binding domain (RBD) of SARS-CoV-2 spike protein in Pichia pastoris and to evaluate its immunogenicity. Methods:The gene encoding the RBD protein was synthesized and cloned into the pPICZαA plasmid. After linearization, the plasmid was transferred and integrated into the genome of Pichia pastoris. The expressed RBD protein in culture supernatant was analyzed by Western blot and Biolayer interferometry. After screening, a single clone expressing the RBD protein was selected. The high-level expression of RBD protein was achieved by optimizing the fermentation process, including the salt concentration adjusting of the medium and induction condition optimization (pH, temperature and duration). The immunogenicity of the expressed RBD protein was evaluated in a mouse model. Results:A single clone with a high expression level of RBD protein was obtained and named RBD-X33. The expression level of RBD protein in the fermentation supernatant reached up to 240 mg/L after optimization of the induction condition (HBSM medium, pH=6.5±0.3, 22℃ and 120 h). In the mouse experiment, the recombinant RBD protein was formulated with Alum+ CpG dual adjuvant and injected into mice. The binding IgG antibody levels were up to 2.7×10 6 tested by ELISA and the neutralizing antibody levels were up to 726.8 tested by live virus neutralizing antibody assay (prototype). Conclusions:The RBD protein could be efficiently expressed in Pichia pastoris and induce stronger immune response in animals. This study suggested that the recombinant SARS-CoV-2 RBD protein expressed in Pichia pastoris could serve as a candidate antigen in the development of SARS-CoV-2 vaccine.

3.
Braz. J. Pharm. Sci. (Online) ; 58: e18984, 2022. graf
Artículo en Inglés | LILACS | ID: biblio-1364429

RESUMEN

Interferon-ß-1a (INF-ß-1a) has gained significant attention due to its emerging applications in the treatment of different human diseases. Therefore, many researchers have attempted to produce it in large quantities and also in a biologically active form using different expression systems. In the present study, we aimed to improve the expression level of INF-ß-1a by Pichia pastoris using optimization of culture conditions. The codon-optimized INF-ß- 1a gene was cloned into pPICZαA plasmid under the control of alcohol oxidase I (AOX1) promoter. The protein expression was induced using different concentrations of methanol at different pHs and temperatures. The biological activity of produced protein was evaluated by anti-proliferative assay. The ideal culture conditions for the expression of INF-ß-1a by P. pastoris were found to be induction with 2% methanol at pH 7.0 culture medium at 30 C which yielded a concentration of 15.5 mg/L INF-ß-1a in a shake flask. Our results indicate that differences in glycosylation pattern could result in different biological activities as INF- ß-1a produced by P. pastoris could significantly more reduce the cell viability of HepG-2 cells, a hepatocellular carcinoma cell line, than a commercially available form of this protein produced by CHO


Asunto(s)
Pichia/clasificación , Interferón beta/agonistas , Carcinoma Hepatocelular/patología , Optimización de Procesos , Codón , Células , Carcinoma Hepatocelular , Concentración de Iones de Hidrógeno
4.
Chinese Journal of Biotechnology ; (12): 939-949, 2021.
Artículo en Chino | WPRIM | ID: wpr-878605

RESUMEN

Pichia pastoris is one of the most widely used recombinant protein expression systems. In this study, a novel method for rapid screening of P. pastoris strains capable of efficiently expressing recombinant proteins was developed. Firstly, the ability to express recombinant proteins of the modified strain GS115-E in which a functional Sec63-EGFP (Enhanced green fluorescent protein) fusion protein replaced the endogenous endoplasmic reticulum transmembrane protein Sec63 was tested. Next, the plasmids carrying different copy numbers of phytase (phy) gene or xylanase (xyn) gene were transformed into GS115-E to obtain recombinant strains with different expression levels of phytase or xylanase, and the expression levels of EGFP and recombinant proteins in different strains were tested. Finally, a flow cytometer sorter was used to separate a mixture of cells with different phytase expression levels into sub-populations according to green fluorescence intensity. A good linear correlation was found between the fluorescence intensities of EGFP and the expression levels of the recombinant proteins in the recombinant strains (0.8<|R|<1). By using the flow cytometer, high-yielding P. pastoris cells were efficiently screened from a mixture of cells. The expression level of phytase of the selected high-fluorescence strains was 4.09 times higher than that of the low-fluorescence strains after 120 h of methanol induction. By detecting the EGFP fluorescence intensity instead of detecting the expression level and activity of the recombinant proteins in the recombinant strains, the method developed by the present study possesses the greatly improved performance of convenience and versatility in screening high-yielding P. pastoris strains. Combining the method with high-throughput screening instruments and technologies, such as flow cytometer and droplet microfluidics, the speed and throughput of this method will be further increased. This method will provide a simple and rapid approach for screening and obtaining P. pastoris with high abilities to express recombinant proteins.


Asunto(s)
6-Fitasa/genética , Pichia/genética , Plásmidos , Proteínas Recombinantes/genética , Saccharomycetales
5.
Chinese Journal of Biotechnology ; (12): 4083-4094, 2021.
Artículo en Chino | WPRIM | ID: wpr-921489

RESUMEN

Vascular endothelial growth factor (VEGF165) is a highly specific vascular endothelial growth factor that can be used to treat many cardiovascular diseases. The development of anti-tumor drugs and disease detection reagents requires highly pure VEGF165 (at least 95% purity). To date, the methods for heterologous expression and purification of VEGF165 require multiple purification steps, but the product purity remains to be low. In this study, we optimized the codons of the human VEGF165 gene (vegf165) according to the yeast codon preference. Based on the Pichia pastoris BBPB vector, we used the Biobrick method to construct a five-copy rhVEGF165 recombinant expression vector using Pgap as the promoter. In addition, a histidine tag was added to the vector. Facilitated by the His tag and the heparin-binding domain of VEGF165, we were able to obtain highly pure rhVEGF165 (purity > 98%) protein using two-step affinity chromatography. The purified rhVEGF165 was biologically active, and reached a concentration of 0.45 mg/mL. The new design of the expression vector enables production of active and highly pure rhVEGF165 ) in a simplified purification process, the purity of the biologically active natural VEGF165 reached the highest reported to date.


Asunto(s)
Humanos , Codón/genética , Pichia/genética , Proteínas Recombinantes/genética , Saccharomycetales , Factor A de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular
6.
Acta Pharmaceutica Sinica ; (12): 1965-1975, 2021.
Artículo en Chino | WPRIM | ID: wpr-887020

RESUMEN

Cephalosporins are widely used in the treatment of infectious diseases. The structural differences in cephalosporin drugs mainly lie in the C-7 amino side chain and the C-3 substituent. In this study, twenty-five haloacylated cephalosporins of five series were designed by using a strategy of introducing simple substituents at the C-7 amino group in four cephalosporin parent nucleus with different C-3 substituents and efficiently synthesized under optimized conditions. Their activities against human pathogenic bacteria, Pichia pastoris, citrus canker and citrus pathogenic fungi were evaluated. The results showed that most of the molecules had activity against human pathogenic bacteria, of which seven compounds including TM1f had stronger or equivalent inhibitory activities against eight human pathogens than the marketed drugs cefalotin, cefoxitin sodium and ceftizoxime sodium. The inhibitory activity of TM1s against Alternaria alternate Al.6 was stronger than that of cephalosporins and comparable to that of the positive control prochloraz. TM1f and TM1s are worthy of further study.

7.
Journal of Zhejiang University. Science. B ; (12): 204-213, 2021.
Artículo en Inglés | WPRIM | ID: wpr-880721

RESUMEN

Acetylcholinesterase (AChE) is a key enzyme used to detect organophosphorus pesticide residues by the enzyme inhibition method. An accidental discovery of a mutant strain with AChE activity was made in our laboratory during the process of AChE expression by

8.
Braz. arch. biol. technol ; 64: e21210144, 2021. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1350275

RESUMEN

Abstract Gonadotropin-releasing hormone (GnRH) is one of the main targets for the development of immunocontraceptives vaccines. The aim of this study was to clone and express the recombinant GnRH fused to the B subunit of Escherichia coli heat-labile enterotoxin (LTB) molecule in Pichia pastoris and Escherichia coli platforms and evaluate their immunogenicity in mice. P. pastoris (pGnRH/LTB) and E. coli (eGnRH/LTB) platforms were able to express GnRH/LTB expected band with ~ 21 kDa. Both constructions were immunogenic in mice. Similar IgG kinetics was observed for both construction when it was used as ELISA antigen respectively, showing significant (p<0.05) IgG levels 5-fold higher than a commercial vaccine and 14-fold higher than the controls. The histological effects of pGnRH/LTB as well as eGnRH/LTB proteins demonstrated a significant effect on the gonads, characterized by atrophy of seminiferous tubules, absence of spermatogenesis and reduction of Leydig cells. Both constructions were able to induce antibodies that block the hormone effect, suggesting the potential of GnRH/LTB, independently of the P. pastoris or E. coli platform used, as a vaccine candidate for immunocontraception.

9.
Electron. j. biotechnol ; 44: 58-59, Mar. 2020. ilus
Artículo en Inglés | LILACS | ID: biblio-1087710

RESUMEN

BACKGROUND: Methanol can be effectively removed from air by biofiltration (Shareefdeen et al., 1993; Babbitt et al., 2009 [1,2]). However, formaldehyde is one of the first metabolic intermediates in the consumption of methanol in methylotrophic microorganisms (Negruta et al., 2010 [3]), and it can be released out of the cell constituting a secondary emission. RESULTS: The total removal of methanol was achieved up to input loads of 263 g m−3 h−1 and the maximum elimination capacity of the system was obtained at an empty bed residence times of 90 s and reached 330 g m−3 h−1 at an input methanol load of 414 g m−3 h−1 and 80% of removal efficiency. Formaldehyde was detected inside the biofilter when the input methanol load was above 212 g m−3 h−1 . Biomass in the filter bed was able to degrade the formaldehyde generated, but with the increase of the methanol input load, the unconsumed formaldehyde was released outside the biofilter. The maximum concentration registered at the output of the system was 3.98 g m−3 when the methanol load was 672 g m−3 h−1 in an empty bed residence times of 60 s. CONCLUSIONS: Formaldehyde is produced inside a biofilter when methanol is treated in a biofiltration system inoculated with Pichia pastoris. Biomass present in the reactor is capable of degrading the formaldehyde generated as the concentration of methanol decreases. However, high methanol loads can lead to the generation and release of formaldehyde into the environment.


Asunto(s)
Pichia/química , Metanol/química , Formaldehído/análisis , Volatilización , Filtros Biológicos , Biomasa , Reactores Biológicos , Ambiente
10.
Chinese Journal of Biotechnology ; (12): 959-968, 2020.
Artículo en Chino | WPRIM | ID: wpr-826880

RESUMEN

To improve the productivity of L-phenyllactic acid (L-PLA), L-LcLDH1(Q88A/I229A), a Lactobacillus casei L-lactate dehydrogenase mutant, was successfully expressed in Pichia pastoris GS115. An NADH regeneration system in vitro was then constructed by coupling the recombinant (re) LcLDH1(Q88A/I229A) with a glucose 1-dehydrogenase for the asymmetric reduction of phenylpyruvate (PPA) to L-PLA. SDS-PAGE analysis showed that the apparent molecular weight of reLcLDH1(Q88A/I229A) was 36.8 kDa. And its specific activity was 270.5 U/mg, 42.9-fold higher than that of LcLDH1 (6.3 U/mg). The asymmetric reduction of PPA (100 mmol/L) was performed at 40 °C and pH 5.0 in an optimal biocatalytic system, containing 10 U/mL reLcLDH1(Q88A/I229A), 1 U/mL SyGDH, 2 mmol/L NAD⁺ and 120 mmol/L D-glucose, producing L-PLA with 99.8% yield and over 99% enantiomeric excess (ee). In addition, the space-time yield (STY) and average turnover frequency (aTOF) were as high as 9.5 g/(L·h) and 257.0 g/(g·h), respectively. The high productivity of reLcLDH1(Q88A/I229A) in the asymmetric reduction of PPA makes it a promising biocatalyst in the preparation of L-PLA.


Asunto(s)
L-Lactato Deshidrogenasa , Genética , Lacticaseibacillus casei , Genética , Ácidos Fenilpirúvicos , Metabolismo , Pichia , Genética , Proteínas Recombinantes , Genética , Metabolismo
11.
Chinese Journal of Biotechnology ; (12): 1590-1599, 2020.
Artículo en Chino | WPRIM | ID: wpr-826818

RESUMEN

β-defensin is a primary protein immune factor in channel catfish's (Ietalurus punetaus) resistance to pathogenic microorganisms. Its primary structure contains a signal peptide composed of 24 amino acid residues at the N-terminal and a mature peptide composed of 43 amino acid residues at the C-terminal. The mature peptide region is responsible for the biological activity of β-defensin. In the present study, a recombinant strain of Pichia pastoris that produces channel catfish β-defensin, was constructed to realize the biosynthesis of channel catfish β-defensin based on eukaryotic expression. First, the β-defensin gene "IPBD" was isolated from the skin of channel catfish by RT-PCR. After linking it with the expression vector pPICZA, pPICZA-IPBD was transferred into competent P. pastoris X-33 cells to obtain recombinant P. pastoris strains. The yeast transformants with multi-copy gene inserts were obtained by using the culture medium containing 1 000 μg/mL zeocin. Using BMM culture medium (without amino nitrogen culture medium) instead of BMMY culture medium (with amino nitrogen culture medium), the fermentation and culture conditions of the recombinant strain were optimized, and the optimal conditions for producing channel catfish β-defensin were determined as follows: the expression was induced for 96 h with 1.0% methanol at 28 °C , 250 r/min. Purified protein with molecular weight of 5.98 kDa was obtained by nickel affinity chromatography, and MALDI-TOF/TOF mass spectrometry proved that it was the expected recombinant IPBD. The antibacterial test results showed that the inhibitory rates of recombinant IPBD on Gram-positive Staphylococcus aureus and Listeria monocytogenes and Gram-negative Pseudomonas aeruginosa were 69.6%, 71.6% and 65.8%, respectively. This study provides a recombinant DNA technique for the development of small molecule natural antibacterial peptide from fish.

12.
Chinese Journal of Biotechnology ; (12): 1679-1688, 2020.
Artículo en Chino | WPRIM | ID: wpr-826809

RESUMEN

Based on the rDNA sequence of Pichia pastoris, a multi-copy gene expression vector of transglutaminase (pPICZα-rDNA-mtg) was constructed and transformed to the host strain (pGAP9-pro/GS115) expressing pro peptide, to obtain the co-expression strain pro/rDNA-mtg (GS115). Real-time fluorescence quantitative PCR (qPCR) was used to analyze transglutaminase gene copy number in the 4 positive strains. We further studied the effect of gene copy on the enzyme production of recombinant Pichia pastoris as well as high-density fermentation of higher expression strain in a 3-L fermenter. The mtg copy numbers of the 4 positive strains were 2.21, 3.36, 5.72 and 7.62 (mtg-2c, mtg-3c, mtg-6c and mtg-8c), respectively, and the enzyme production capacity and protein expression level were mtg-3c>mtg-2c>mtg-6c>mtg-8c. Mtg-3c and mtg-6c of high-density fermentation had the highest enzymatic activity and enzymatic activity per unit wet weight in the supernatant of 3.12 U/mL, 52.1 U/g (wet weight) and 2.07 U/mL and 36.5 U/g (wet weight), respectively. In terms of enzyme activity per unit wet weight, mtg-3c is 1.4 times higher than that of mtg-6c. The activity of purified enzyme (mtg-3c) was up to 7.21 U/mL and the protein concentration was 437.2 μg/mL. By analyzing the effect of mtg copy number on the enzyme production of recombinant strains, mtg-3c is suitable for the co-expression of two genes (pro and mtg) in pro/rDNA-mtg, and its enzyme activity is related to higher protein secretion of the strain.

13.
Chinese Journal of Biotechnology ; (12): 1689-1698, 2020.
Artículo en Chino | WPRIM | ID: wpr-826808

RESUMEN

Enterokinase is a class of serine proteases that specifically recognize the cleavage DDDDK sequences. Therefore, enterokinase has been widely used as a tool enzyme in the field of biomedicine. Currently, the expression level of enterokinase in Pichia pastoris is low, which hinders related practical applications. In this study, the effects of six different signal peptides SP1, SP2, SP3, SP4, SP7 and SP8 on the secretory expression of enterokinase in Pichia pastoris were studied. Compared with α-factor, SP1 significantly increased the secretory expression of enterokinase (from 6.8 mg/L to 14.3 mg/L), and the enterokinase activity increased from (2 390±212) U/mL to (4 995±378) U/mL in shaking flask cultures. On this basis, the enterokinase activity was further enhanced to (7 219±489) U/mL by co-expressing the endogenous protein Kex2. Moreover, the activity that the mutant strain with N-terminal fusion of three amino acids of WLR was increased to (15 145±920) U/mL with a high specific activity of (1 174 600±53 100) U/mg. The efficient secretory expression of enterokinase laid a foundation for its applications in near future.

14.
Braz. arch. biol. technol ; 63: e20190148, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1132220

RESUMEN

Abstract Recombinant proteins are a suggested alternative for the diagnosis of toxocariasis. The current Escherichia coli recombinant protein overexpression system usually produces insoluble products. As an alternative, yeast such as Pichia pastoris have secretory mechanisms, which could diminish the cost and time for production. This study aimed to produce recombinant proteins in Pichia pastoris and verify their sensibility and specificity in an indirect ELISA assay. Two sequences (rTES-30 and rTES-120) of Toxocara canis excretory-secretory antigens were cloned in a pPICZαB vector and expressed in P. pastoris KM71H. Sera samples collected from human adults infected by Toxocara spp. were tested by indirect ELISA using rTES-30 and rTES-120 as antigens. Recombinant proteins were detected at 72 hours after induction, in the supernatant, as pure bands between 60~70 kDa with hyperglycosylation. Regarding diagnosis potential, recombinant antigens had high specificity (95.6%); however, sensitivity was 55.6% for rTES-30 and 68.9% for rTES-120. Further deglycosylation of the P. pastoris antigens did not seem to affect ELISA performance (p>0.05). The low sensitivity in the serodiagnosis diminished any advantage that P. pastoris expression could have. Therefore, we do not recommend P. pastoris recombinant TES production as an alternative for the diagnosis of toxocariasis.


Asunto(s)
Humanos , Pichia/inmunología , Proteínas Recombinantes/sangre , Toxocariasis/diagnóstico , Pruebas Inmunológicas , Ensayo de Inmunoadsorción Enzimática , Sensibilidad y Especificidad
15.
Electron. j. biotechnol ; 40: 10-16, July. 2019. tab, ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1053200

RESUMEN

Background: Methanol can be effectively removed from air by biofiltration. However, formaldehyde is one of the first metabolic intermediates in the consumption of methanol in methylotrophic microorganisms, and it can be released out of the cell constituting a secondary emission. Results: The total removal of methanol was achieved up to input loads of 263 g m−3 h−1 and the maximum elimination capacity of the system was obtained at an empty bed residence times of 90 s and reached 330 g m− 3 h−1 at an input methanol load of 414 g m−3 h−1 and 80% of removal efficiency. Formaldehyde was detected inside the biofilter when the input methanol load was above 212 g m−3 h−1 . Biomass in the filter bed was able to degrade the formaldehyde generated, but with the increase of the methanol input load, the unconsumed formaldehyde was released outside the biofilter. The maximum concentration registered at the output of the system was 3.98 g m−3 when the methanol load was 672 g m−3 h−1 in an empty bed residence times of 60 s. Conclusions: Formaldehyde is produced inside a biofilter when methanol is treated in a biofiltration system inoculated with Pichia pastoris. Biomass present in the reactor is capable of degrading the formaldehyde generated as the concentration of methanol decreases. However, high methanol loads can lead to the generation and release of formaldehyde into the environment


Asunto(s)
Pichia/metabolismo , Metanol/metabolismo , Formaldehído/metabolismo , Biomasa , Contaminantes Atmosféricos , Ambiente , Filtración
16.
J Environ Biol ; 2019 Jan; 40(1): 69-75
Artículo | IMSEAR | ID: sea-214447

RESUMEN

Aim: The objective of the present study was to clone and express A. niger endoinulinase gene in P. pastoris for high-level expression. Further to explore high cell density cultivation, biochemical characterization of recombinant endoinulinase and application of inulo-oligosaccharides (IOS) as prebiotics was also studied. Methodology: Molecular cloning of A. niger endoinulinase gene in P. pastoris, screening of positive clones by genomic DNA PCR, shake flask studies, high cell density fermentation performed with both conventional and temperature shift approach, biochemical characterization of endoinulinase and in-vitro fermentation of IOS was carried out to confirm prebiotic efficacy. Results: The endoinulinase gene of 1482 bp from Aspergillus niger was genetically engineered in the GS115 host and was secreted extracellularly using α signal sequence. As a result of fermentation with the conventional approach, recombinant endoinulinase activity was enhanced to 65.7 U ml-1. Recombinant endoinulinase showed absolute substrate specificity for inulin, hydrolyzing inulin to IOS with the DP range 3-4. Interpretation: Hydrolysis of inulin by recombinant endoinulinase was characterized. In-vitro fermentation of IOS by lactic acid and bifidogenic bacteria was studied as a part of industrial application and functional properties of IOS was similar to commercial prebiotics.

17.
Chinese Journal of Biotechnology ; (12): 1317-1325, 2019.
Artículo en Chino | WPRIM | ID: wpr-771797

RESUMEN

Pichia pastoris is one of the most convenient and widely used heterologous protein expression systems. To further improve its ability to express heterologous proteins, we developed a high-throughput P. pastoris screening method based on droplet microfluidic and demonstrated the method by screening and obtaining mutants with enhanced xylanase expression and secretion abilities. We used PCR (Polymerase Chain Reaction) amplification to obtain a fusion fragment of xylanase xyn5 gene and green fluorescent protein gfp gene, and cloned this fragment into pPIC9K, the expression vector of Pichia pastoris, to construct the plasmid pPIC9K-xyn5-gfp that recombined the DNA fragments of xylanase and green fluorescent protein. After this plasmid entered P. pastoris GS115 by electroporation, the P. pastoris SG strain that could express xylanase and green fluorescent protein was obtained. The above-said strains were then mutagenized by atmospheric room temperature plasma and subsequently encapsulated to form single-cell droplets. After 24-hour cultivation of the droplets, microfluidic screening was carried out to obtain the mutant strain with high xylanase expression for further construction and screening of the next mutagenesis library. After five rounds of droplet microfluidic screening, a highly productive strain P. pastoris SG-m5 was obtained. The activity of the expressed xylanase was 149.17 U/mg, 300% higher than that of those expressed by the original strain SG. This strain's ability to secrete heterologous protein was 160% higher than that of the original strain. With a screening throughput of 100 000 strains per hour, the high-throughput P. pastoris screening system based on single-cell droplet microfluidic developed by the present study screens a library with million strains in only 10 hours and consumes only 100 μL of fluorescent reagent, thus reducing the reagent cost by millions of times compared with the traditional microplate screening and more importantly, providing a novel method to obtain P. pastoris with high abilities to express and secret heterologous proteins by efficient and low-cost screening.


Asunto(s)
Microfluídica , Mutagénesis , Pichia , Plásmidos , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes
18.
Chinese Journal of Biotechnology ; (12): 49-58, 2019.
Artículo en Chino | WPRIM | ID: wpr-771401

RESUMEN

To evaluate the immunogenicity of HA globular head domain of H5 subtype influenza virus (H5HA), the gene of H5HA was optimized and the recombinant pPICZaA-H5HA expressing vector was constructed and transfected into Pichia pastoris. The expression of the recombinant H5HA was confirmed by SDS-PAGE and Western blotting and the results demonstrated that the recombinant H5HA (37 kDa) was highly expressed in Pichia pastoris with concentration of 0.2 mg/mL in medium. The recombinant H5HA was concentrated and purified using Ni-NTA affinity chromatography. The immunogenicity of H5HA was evaluated by immunizing eight groups of chicken through intranasal or intramuscular injection with different doses of purified H5HA combined with different adjuvants, respectively. The results showed that the recombinant H5HA could induce high level IgG (HI titer was 1:64 and neutralizing antibody titer was 1:218) and the optimal dosage of the recombinant H5HA was 50 μg combined with oil. In addition, intramuscular injection was better than nasal immunization. This study provided a theoretical support for subunit vaccine development.


Asunto(s)
Animales , Anticuerpos Antivirales , Aves , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Pichia , Vacunación
19.
Chinese Journal of Biotechnology ; (12): 70-80, 2019.
Artículo en Chino | WPRIM | ID: wpr-771399

RESUMEN

Translocation ribonucleic acid (tRNA) is one of the important components in protein synthesis. In order to explore the effect of the changes of tRNAs corresponding to rare codons (rarity tRNAs) on the expression of exogenous genes, the co-expression system of rare tRNA gene and exogenous gene in Pichia pastoris was constructed. The expression of GFP in P. pastoris can be greatly reduced when a repressor region composed of four continuous proline rare codon CCG was added into the GFP gene. The expression amount of the repressed GFP could be increased about 4.9% when tRNAProCCG gene was cointegrated to the 3' of the repressed GFP gene through pPIC9K to the genome of P. pastoris GS115. Meanwhile, the expression amount of the repressed GFP increased about 12.5% by integrating the repressed GFP gene and tRNAProCCG gene to the genome of P. pastoris GS115 through pPIC9K and pFLDα, respectively. Using the same method, NFATc3T-GFP fusion gene and tRNAProCCG gene were co-expressed in P. pastoris GS115 resulting in 21.3% increased of the expression amount of NFATc3T-GFP fusion protein. In conclusion, tRNAProCCG gene has been confirmed to be a kind of rare tRNAs in P. pastoris GS115. Through co-expression of tRNAProCCG gene and heterologous genes which containing the continuous rare codon CCG, the expression of the repressed heterologous genes could be increased significantly. Furthermore, this co-expression system would contribute to screening and determining the other rare tRNAs.


Asunto(s)
Codón , Pichia , Proteínas Recombinantes
20.
Chinese Journal of Biotechnology ; (12): 91-101, 2019.
Artículo en Chino | WPRIM | ID: wpr-771397

RESUMEN

Defensins are endogenous cationic antimicrobial peptides rich in arginine and cysteine residues. They are important immune factors resisting pathogenic bacteria infection for mollusks. The 43 amino acid residues near the carboxyl terminal for Crassostrea gigas defensin (CgD) form its mature peptide region, responsible for the biological activity of CgD. First, two target genes, CgDH⁺ (with 6×His-tag at 3' end) and CgDH- (without 6×His-tag at 3' end) were separated and amplified by RT-PCR with specific primers from Crassostrea gigas mantle. These two target genes were ligated to the expression vector pPICZαA to construct recombinant expression vectors, pPICZαA-CgDH⁺ and pPICZαA-CgDH-, which were transformed into competent Pichia pastoris X-33 cells by electroporation respectively. The recombinant target proteins, CgDH⁺ and CgDH-, were induced for 72 h with 1% methanol at 29 °C and 250 r/min. The recombinant CgDH⁺ (5.78 kDa) was purified by immobilized metal affinity chromatography (IMAC), and identified by MALDI-TOF-TOF analysis, demonstrating that it was the expected target protein. Based on the concentration of the purified product, the estimated yield of recombinant CgDH⁺ was 2.32 mg/L. Antimicrobial assay showed that the culture medium supernatant containing recombinant CgDH⁺ and recombinant CgDH-, respectively, had activities against Staphylococcus aureus and Pseudomonas aeruginosa, indicating that the existence of 6×His tag in the recombinant proteins do not affect their biological activities.


Asunto(s)
Animales , Antibacterianos , Péptidos Catiónicos Antimicrobianos , Crassostrea , Defensinas , Pichia , Proteínas Recombinantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA