Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 103-113, 2023.
Artículo en Chino | WPRIM | ID: wpr-996510

RESUMEN

ObjectiveTo investigate the effect and mechanism of Aconiti Lateralis Radix Praeparata-Cinnamomi Cortex in regulating the intestinal function in the rat model of slow transit constipation (STC) due to yang deficiency via the vasoactive intestinal peptide (VIP)/cathelicidin antimicrobial peptide (cAMP)/protein kinase A (PKA)/aquaporin (AQP) pathway. MethodSD rats were randomized into 6 groups (n=6), including a control group, a model group, high-, medium-, and low-dose Aconiti Lateralis Radix Praeparata-Cinnamomi Cortex groups, and a prucalopride group. Other groups except the control group were treated with loperamide hydrochloride combined with ice water by gavage for the modeling of STC due to yang deficiency. The number of fecal pellets, time to the first black stool defecation, fecal water content, intestinal propulsion rate, and score of fecal properties were recorded in each group. At the end of the treatment, the colon was stained with hematoxylin-eosin (HE) to reveal the histopathological changes and Alcian blue/periodic acid-Schiff (AB-PAS) to reveal the secretion of colonic mucus. The enzyme-linked immunosorbent assay (ELISA) was employed to measure the level of VIP in the serum. The mRNA level of AQP in the colon was measured by polymerase chain reaction (Real-time PCR). Immunohistochemical staining was performed to observe the expression of AQPs in the colon and kidney tissues. Western blot was performed to determine the protein levels of cAMP, PKA, and VIP in the colon tissue. ResultCompared with the control group, the model group had longer time to the first black stool defecation, reduced fecal pellets and water content, reduced Bristol Stool Form Scale score and intestinal propulsion rate, and constipation aggravated(P<0.01). Moreover, increased the intestinal lesions, reduced the mucus secretion, reduce the serum VIP level, up-regulated the expression levels of AQP1 in the colon and kidney tissues, inhibited the expression of AQP3 and AQP9(P<0.01)., and down-regulated the protein levels of cAMP, PKA, and VIP in the colon tissue. Compared with the model group, the high-dose Aconiti Lateralis Radix Praeparata-Cinnamomi Cortex group had shortened time to the first black stool defecation, increased fecal pellets and water content, increased Bristol Stool Form Scale score and intestinal propulsion rate, and alleviated constipation symptoms. Moreover, high-dose Aconiti Lateralis Radix Praeparata-Cinnamomi Cortex reduced the intestinal lesions, increased the mucus secretion, elevated the serum VIP level(P<0.01)., down-regulated the expression levels of AQP1 in the colon and kidney tissues, promoted the expression of AQP3 and AQP9(P<0.05,P<0.01), and up-regulated the protein levels of cAMP, PKA, and VIP in the colon tissue. The medium- and low-dose groups had weaker effect than the high-dose group(P<0.01). ConclusionHigh-dose Aconiti Lateralis Radix Praeparata-Cinnamomi Cortex can improve the intestinal motility and balance the intestinal water and fluid metabolism by up-regulating the VIP/cAMP/PKA/AQP pathway, thereby mitigating the constipation symptoms in the rat model of slow transit constipation due to yang deficiency.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 129-136, 2023.
Artículo en Chino | WPRIM | ID: wpr-960915

RESUMEN

ObjectiveTo investigate the protective effect of Guiqi Baizhu prescription combined with oxaliplatin on the intestinal barrier of tumor-bearing mice with gastric cancer by regulating downstream aquaporin 3 (AQP3) and aquaporin 4 (AQP4) through the vasoactive intestinal peptide (VIP)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway. MethodThe gastric cancer cell lines MFC with a density of 1×107/mL were prepared into cell suspension. The tumor-bearing mouse model of gastric cancer was established by inoculating 0.2 mL cell suspension under the right axilla of mice. After successful modeling, mice were randomly divided into 5 groups, namely, model group, oxaliplatin group (10 mg·kg-1), and high, medium, and low-dose oxaliplatin + Guiqi Baizhu prescription groups (17.68, 8.84, 4.42 g·kg-1), with 10 mice in each group, and the remaining 10 mice were set as a blank group. Mice in each group were treated with Chinese medicine, oxaliplatin, or normal saline by gavage or intraperitoneal injection for 14 d. The next day after the last dose, blood was taken from the eyeball to separate serum and take colonic samples. Hematoxylin-eosin (HE) staining was used to observe the changes in tissue morphology. The content of D-lactate acid (D-LA) and diamine oxidase (DAO) in the serum was determined by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expressions of VIP, cAMP, PKA, AQP3, and AQP4 were detected by Real-time quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the blank group, the model group showed edema in the colonic submucosa, disordered arrangement of intestinal glands in the mucosal layer, loss of goblet cells, infiltration of inflammatory cells, and villus shedding. However, there were different degrees of improvement in each administration group. As compared with the blank group, the serum levels of DAO and D-LA in the model group were significantly increased (P<0.01). As compared with the model group, the levels of DAO and D-LA in the high-dose oxaliplatin + Guiqi Baizhu prescription group and the level of D-LA in the medium-dose oxaliplatin + Guiqi Baizhu prescription group were decreased (P<0.05, P<0.01). As compared with the oxaliplatin group, the levels of D-LA in the high and medium-dose oxaliplatin + Guiqi Baizhu prescription groups were decreased (P<0.05), and the levels of DAO and D-LA in other administration groups were decreased as well, but the difference had no statistical significance. As compared with the blank group, the mRNA and protein expression levels of VIP, cAMP, PKA, AQP3, and AQP4 in the model group were significantly decreased (P<0.05, P<0.01). As compared with the model group, the mRNA and protein expression levels of VIP, cAMP, PKA, AQP3, and AQP4 in each administration group were increased, and those in the high-dose oxaliplatin + Guiqi Baizhu prescription group were significantly increased (P<0.05, P<0.01), while the protein expression level of cAMP in the medium-dose oxaliplatin + Guiqi Baizhu prescription group were increased (P<0.05). As compared with the oxaliplatin group, the protein expression levels of cAMP in the high-dose oxaliplatin + Guiqi Baizhu prescription group were increased (P<0.05), and the mRNA and protein expressions of these indexes in the other groups were also increased but the differences were not statistically significant. ConclusionGuiqi Baizhu prescription combined with oxaliplatin can regulate AQP3 and AQP4 through the VIP/cAMP/PKA signaling pathway to protect the intestinal barrier of tumor-bearing mice with gastric cancer.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 53-60, 2023.
Artículo en Chino | WPRIM | ID: wpr-965648

RESUMEN

ObjectiveTo investigate the role of cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP-response element binding protein (CREB) signaling pathway in water metabolism and intestinal epithelial permeability in ulcerative colitis (UC) and the intervention mechanism of Shaoyaotang based on the theory of large intestine governing fluids. MethodSixty male SD rats were divided into blank group, model group, mesalazine group (0.42 g·kg-1), Shaoyaotang low-dose group (11.1 g·kg-1), Shaoyaotang medium-dose group (22.2 g·kg-1) and Shaoyaotang high-dose group (44.4 g·kg-1), with 10 in each group. The UC rat model of internal retention of dampness-heat was established by compound factors. The blank group and the model group were given normal saline (ig). The mesalazine group was given mesalazine (ig), and Shaoyaotang low-, medium- and high-dose groups were administrated with corresponding doses of Shaoyaotang (ig). The treatment lasted for 14 days. The diarrhea score and fecal moisture content of rats in each group were observed. The contents of diamine oxidase (DAO) and D-lactic acid in plasma were detected by enzyme-linked immunosorbent assay (ELISA). The protein expressions of aquaporin (AQP)8, AQP4, ZO-1 and Occludin in colon tissues were detected by immunohistochemistry, while those of cAMP, PKA and CREB in colon tissues were determined by Western blot. ResultCompared with the normal group, the model group had elevated diarrhea score and fecal moisten content (P<0.01), increased contents of DAO and D-lactic acid in plasma (P<0.01) and decreased protein expressions of ZO-1, Occludin, AQP8, AQP4, cAMP, PKA and CREB in colon (P<0.01). Compared with the conditions in the model group, the contents of DAO and D-lactic acid in plasma in each administration groups were lower (P<0.01), while the protein expressions of ZO-1, Occludin, AQP8, AQP4, cAMP, PKA and CREB in colon were higher (P<0.01). ConclusionShaoyaotang alleviates the diarrhea in UC, probably through activating cAMP/PKA/CREB signaling pathway, up-regulating expressions of AQPs, enhancing tight junctions in intestinal epithelium and thus improving the water metabolism in colon and the intestinal mucosal permeability.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 101-107, 2022.
Artículo en Chino | WPRIM | ID: wpr-940392

RESUMEN

ObjectiveTo explore the mechanism of the combined therapy of lung and intestine (Mahuangtang + Da Chengqitang) in alleviating pulmonary edema in rats with acute lung injury (ALI) induced by lipopolysaccharide (LPS). MethodWistar rats were randomly divided into blank group, model group, low-, medium-, and high-dose groups with combined therapy of lung and intestine, and positive control group. LPS (10 mg·kg-1) was given (ip) to induce ALI in rats. After modeling, the blank group was given normal saline (25 mL·kg-1), the combined therapy of lung and intestine treatment groups were given (ig) low- (5 g·kg-1), medium- (7.5 g·kg-1), and high-dose (10 g·kg-1) Mahuangtang and Da Chengqitang, and the positive control group was given dexamethasone (5 mg·kg-1). Medications were administered 0, 8, and 16 h after LPS injection for 3 times. Then lung tissue and serum were collected after administration. The lung tissues were stained with haematoxylin-eosin (HE), and the pulmonary edema score was evaluated. The dry/wet (D/W) weight ratio of lung tissues in each group was measured, and the content of serum vasoactive intestinal peptide (VIP) in rats was detected by enzyme-linked immunosorbent assay (ELISA). Western blot was used to detect the protein levels of aquaporin-1 (AQP1), AQP5, VIP, cyclic adenosine monophosphate (cAMP), phosphorylated protein kinase A (p-PKA), and PKA in lung tissues of rats in each group. The level of VIP mRNA in lung tissues of rats was detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultCompared with the blank group, the model group exhibited obvious lung injury, increased edema score, decreased D/W ratio (P<0.01), declined AQP1, AQP5, cAMP, and p-PKA/PKA in lung tissues (P<0.05, P<0.01), elevated VIP content (P<0.01), and up-regulated levels of VIP protein and mRNA in lung tissues (P<0.05, P<0.01). Compared with the model group, combined therapy of lung and intestine treatment groups showed alleviated lung injury, increased D/W ratio (P<0.01), elevated AQP1, AQP5, VIP, cAMP, and p-PKA/PKA in lung tissues (P<0.05, P<0.01), and up-regulated VIP levels in lung tissues (P<0.05, P<0.01). ConclusionThe combined therapy of lung and intestine can alleviate ALI-induced lung tissue edema, and the mechanism may be related to the activation of the VIP/cAMP/PKA signaling pathway, which further promotes the expression of AQP1 and AQP5 and enhances the water metabolism of lung tissue.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 88-96, 2021.
Artículo en Chino | WPRIM | ID: wpr-906054

RESUMEN

Objective:To investigate the effect of Jianpi Bufei prescription (JPBFP) on airway inflammation, airway hyperresponsiveness (AHR), and cyclic adenosine monophosphate (cAMP) signaling pathway activity in ovalbumin (OVA)-sensitized and challenged juvenile asthma rats. Method:Seventy-five male SD rats were randomly divided into a blank group (<italic>n</italic>=15) and an experimental group (<italic>n</italic>=60). The rats in the experimental group were sensitized by aluminum hydroxide gel containing 0.2% OVA and stimulated by aerosol inhalation of normal saline containing 1% OVA to induce an asthma model, followed by assignment into the following groups: a model group (<italic>n</italic>=15), a JPBFP group (<italic>n</italic>=15, 8.37 g·kg<sup>-1</sup>·d<sup>-1</sup>), an aminophylline group (<italic>n</italic>=15, 40 mg·kg<sup>-1</sup>·d<sup>-1</sup>), and a dexamethasone group (<italic>n</italic>=15, 0.1 mg·kg<sup>-1</sup>·d<sup>-1</sup>). AHR was detected by the pulmonary function analyzer, changes in inflammatory cells by white blood cell (WBC) count and differential blood count in bronchoalveolar lavage fluid (BALF), and pathological changes of lung tissues by hematoxylin-eosin (HE), Masson, and periodic acid-schiff (PAS) staining. The interleukin (IL)-4, IL-5, IL-13, interferon (IFN)-<italic>γ</italic>, and tumor necrosis factor (TNF)-<italic>α</italic> levels in serum and the cAMP level in plasma were tested by the enzyme-linked immunosorbent assay (ELISA). Protein kinase A (PKA) expression in lung tissues was detected by immunohistochemistry. The cAMP-response element-binding protein (CREB) mRNA and protein expression in lung tissues was detected by the real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot. Result:Compared with the blank group, the model group showed increased lung resistance, decreased pulmonary compliance (<italic>P</italic><0.05), elevated WBC count and proportion of eosinophils in BALF (<italic>P</italic><0.05), up-regulated levels of IL-4, IL-5, IL-13, and TNF-<italic>α</italic> in peripheral blood, declining IFN-<italic>γ</italic> level (<italic>P</italic><0.01), severe pathological changes of lung tissues, dwindled cAMP, and down-regulated PKA and CREB expression (<italic>P</italic><0.01). Compared with the model group, JPBFP inhibited AHR, reduced WBC count and proportion of eosinophils in BALF and lung resistance (<italic>P</italic><0.05), improved pathological changes of lung tissues, increased pulmonary compliance, and up-regulated cAMP in serum and PKA and CREB expression in lung tissues (<italic>P</italic><0.01). Conclusion:JPBFP can improve AHR, inhibit airway inflammation, and alleviate lung injury in asthma rats. Its mechanism may be related to the up-regulation of the activity of the cAMP/PKA/CREB signaling pathway.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 135-142, 2019.
Artículo en Chino | WPRIM | ID: wpr-802431

RESUMEN

Objective: To explore the effect of Tongbiantang on protein kinase A(PKA) and mitogen-activated protein kinase(MAPK) signal pathway in colon tissue of slow transit constipation(STC) rats and its related mechanism. Method: Eighty SD rats were randomly divided into blank group and model group, 20 rats in blank group, 60 rats in model group, half male and half female; blank group was fed with common diet, model group was fed with compound phenylethylpiperidine, after 120 days of modeling, 10 rats in blank group and 20 rats in model group were randomly selected, and 2 rats were determined. Four-hour stool volume, water content and small intestinal charcoal powder propelling rate were observed to observe the number of stool particles retained in colon and evaluate the success of STC rat modeling. After 1 week of drug withdrawal, 40 rats in model group were randomly divided into model group(33 g·kg-1), Tongbiantang group, Tongbiantang+H89 group (PKA signaling pathway blocker,5 mg·kg-1), Tongbiantang+U0126 group (MPKA signaling pathway blocker,0.1 mg·kg-1) each. After 4 weeks of intervention with Tongbiantang, the amount of stool excretion, water content and small intestinal charcoal powder propelling rate were measured in 10 rats, and the number of stool grains in colon was observed. The protein content and mRNA expression in aquaporins 3(AQP3), AQP4, PKA and MAPKs signaling pathways in colon was determined by immunohistochemical staining (IHC), Western blot and Real-time fluorescence quantitative PCR (Real-time PCR). Result: Compared with the blank group, the 24-hour stool volume, fecal water content, small intestinal charcoal propelling rate and the number of fecal particles in colon of rats in the model group were significantly decreased (PPPPPConclusion: Tongbiantang can inhibit the PKA and MPKA signal pathways, thus down-regulate the expression of AQP3 and AQP4, increase intestinal peristalsis and intestinal water, and effectively treat STC.

7.
Basic & Clinical Medicine ; (12): 970-974, 2017.
Artículo en Chino | WPRIM | ID: wpr-612010

RESUMEN

Objective To investigate the effect of urotensin Ⅱ on myocardial fibrosis in rats.Methods The pressure overload animal model was established in rats by abdominal aorta coarctation.The rats were divided into sham operation group,modeled for 4,8 and 12 weeks group.The expression of U Ⅱ,GPR14,col-Ⅰ,col-Ⅲ,and PKA in cardiac tissues was detected by Western blot.Isolated and cultured cardiac myofibroblasts (CFs) from new-born SD rats were treated with U Ⅱ,KT5720 or SB-611812,and then the proliferation of CFs was observed by micro scope and CKK-8.Results The expression of U Ⅱ,GPR14,col-Ⅰ,col-Ⅲand PKA increased markedly in cardiac tissues of model rat,which were time-dependent.U Ⅱ promoted the proliferation of CFs (P<0.05),which could be inhibited by KT5720 or SB-611812.Conclusions U Ⅱ/UT system promotes the occurring and development of myocardial fibrosis.

8.
Chinese Pharmacological Bulletin ; (12)1987.
Artículo en Chino | WPRIM | ID: wpr-561155

RESUMEN

0.05); but significantly increased cAMP content and PKA activity at high concentration [(10-9~10-5) mol?L-1] (compared with normal control group:P

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA