Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Medical Instrumentation ; (6): 38-42, 2023.
Artículo en Chino | WPRIM | ID: wpr-971300

RESUMEN

Accurate segmentation of retinal blood vessels is of great significance for diagnosing, preventing and detecting eye diseases. In recent years, the U-Net network and its various variants have reached advanced level in the field of medical image segmentation. Most of these networks choose to use simple max pooling to down-sample the intermediate feature layer of the image, which is easy to lose part of the information, so this study proposes a simple and effective new down-sampling method Pixel Fusion-pooling (PF-pooling), which can well fuse the adjacent pixel information of the image. The down-sampling method proposed in this study is a lightweight general module that can be effectively integrated into various network architectures based on convolutional operations. The experimental results on the DRIVE and STARE datasets show that the F1-score index of the U-Net model using PF-pooling on the STARE dataset improved by 1.98%. The accuracy rate is increased by 0.2%, and the sensitivity is increased by 3.88%. And the generalization of the proposed module is verified by replacing different algorithm models. The results show that PF-pooling has achieved performance improvement in both Dense-UNet and Res-UNet models, and has good universality.


Asunto(s)
Algoritmos , Vasos Retinianos , Procesamiento de Imagen Asistido por Computador
2.
Journal of Biomedical Engineering ; (6): 276-285, 2021.
Artículo en Chino | WPRIM | ID: wpr-879275

RESUMEN

The existing retinal vessels segmentation algorithms have various problems that the end of main vessels are easy to break, and the central macula and the optic disc boundary are likely to be mistakenly segmented. To solve the above problems, a novel retinal vessels segmentation algorithm is proposed in this paper. The algorithm merged together vessels contour information and conditional generative adversarial nets. Firstly, non-uniform light removal and principal component analysis were used to process the fundus images. Therefore, it enhanced the contrast between the blood vessels and the background, and obtained the single-scale gray images with rich feature information. Secondly, the dense blocks integrated with the deep separable convolution with offset and squeeze-and-exception (SE) block were applied to the encoder and decoder to alleviate the gradient disappearance or explosion. Simultaneously, the network focused on the feature information of the learning target. Thirdly, the contour loss function was added to improve the identification ability of the blood vessels information and contour information of the network. Finally, experiments were carried out on the DRIVE and STARE datasets respectively. The value of area under the receiver operating characteristic reached 0.982 5 and 0.987 4, respectively, and the accuracy reached 0.967 7 and 0.975 6, respectively. Experimental results show that the algorithm can accurately distinguish contours and blood vessels, and reduce blood vessel rupture. The algorithm has certain application value in the diagnosis of clinical ophthalmic diseases.


Asunto(s)
Algoritmos , Fondo de Ojo , Disco Óptico , Curva ROC , Vasos Retinianos/diagnóstico por imagen
3.
Chinese Journal of Medical Instrumentation ; (6): 108-112, 2020.
Artículo en Chino | WPRIM | ID: wpr-942709

RESUMEN

Retinal vascular function is complex, morphological structure varies from person to person, and is susceptible to vascular diseases and systemic vascular diseases. Its accurate segmentation is of great significance for disease diagnosis and identification. In this paper, a multi-scale matching filtering algorithm is proposed for the uneven size of retinal blood vessels. On the basis of the traditional singlescale Gaussian matching filter, multiscale Gaussian matched filters with two sizes are used to enhance grayscale images. Enhancement is performed, and the superimposed image is binarized using a twodimensional maximum entropy threshold segmentation algorithm. The algorithm is tested in the DRIVE database with sensitivity, specificity and accuracy of 0.803, 0.959, 0.981, respectively. Comparing with the traditional algorithm, the algorithm has high sensitivity, fast running speed and rich details of segmentation results.


Asunto(s)
Humanos , Algoritmos , Entropía , Procesamiento de Imagen Asistido por Computador , Vasos Retinianos/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA