RESUMEN
Objective:To study the influence of environmental radiation of radiotherapy workplace on the stereotactic radiation therapy(SRT) plan absolute dose verification with plastic scintillator detector Exradin W1.Methods:The computed tomography (CT) image of the stereotactic dose verification phantom (SDVP) was scanned and imported into the treatment planning system. Three schemes, including 3 cm × 3 cm to 20 cm × 20 cm square gradient field irradiation, virtual planning target volume(PTV) non-coplanar arcs irradiation and 10 cases of volumetric modulated arc radiotherapy SRT (VMAT SRT) clinical plan verification, were measured with or without a home-made shield over the photodiode. Measurements were recorded to analyze the impact of environmental radiation on dose measurement under different conditions.Results:The noise effect of the photodiode increased with the the lager open field size, and decreased with the reduced distance between the photodiode and isocenter. The contribution of photodiode noise effect increase with the lager non-coplanar arc field size, with the largest up to 4.16%. As for the clinical SRT plan verification measurement, the relative difference between the SRT plan measurements and treatment planning system(TPS) before and after shielding were (1.39±1.05)% and (0.59±1.03)%, respectively ( t=-5.343, P < 0.05). and for W1 vs. A16 microchamber was (1.22±1.56)% and (0.42±1.42)%, respectively ( t=-5.414, P < 0.05). Conclusions:The measurements of Exradin W1 are in good agreement with the TPS result and the ionization chamber measurements, but its accuracy is easily affected by the environmental radiation of radiotherapy workplace. To measure non-coplanar radiation, the photodiode should be placed as far away as possible from the isocenter and be properly shielded, which can effectively improve the accuracy and stability of the measurement and provide a strong guarantee for clinical precision radiotherapy.
RESUMEN
Objective:A two-dimensional (2D) in-house-built scintillator detection system (SDS) was utilized for quality assurance of the active spot scanning proton and heavy ion accelerator, aiming to establish a rapid detection method and provide reference for the quality of proton and heavy ion beam (spot position, spot size, virtual source-to-axis distance, profile depth dose distribution and beam range).Methods:The SDS consisted of a ceramic gadolinium-sulfoxylate phosphor-scintillating screen, a mirror and a commercial digital camera. The dose distribution image was obtained based on scintillator, mirror reflector and optical signal acquisition device to transform the proton and heavy ion beam into visible light through sulfur gadolinium oxide scintillator and collect visible light information to meet the clinical requirements for the quality of proton and heavy ion beam.Results:The deviation of spot position measured by multifilament proportional chamber and the SDS was less than 1mm. The differences of beam spot size measured by multifilament proportional chamber and the SDS were (1.40±0.59)mm for protons, and (0.5±0.08)mm for carbon ions. For 429.25MeV/u carbon, the virtual source-to-axis distance (V SAD) at the x-and y-axes was 751.8cm and 805.6cm. And difference between physical distance and virtual source-to-axis distance was less than 1%. The range of 287.5MeV/u carbon measured by SDS was 160mm. Conclusions:The in-house-built scintillator detector can measure beam spot position and size, virtual source, depth distribution curve and range, which can be used as an effective tool for quality assurance control of proton and heavy ion therapy.
RESUMEN
In this study, we have fabricated a fiber-optic dosimeter for a proton beam therapy dosimetry. We have measured scintillating lights with the various kinds of organic scintillators and selected the BCF-12 as a sensor-tip material due to its highest light output and peak/plateau ratio. To determine the optimum diameter of BCF-12, we have measured scintillating lights according to the energy losses of proton beams in a water phantom. Also, we determined the adequate length of organic scintillator by measuring scintillating lights according to the incident angles of proton beam. Using an optimized fiber-optic dosimeter, we have measured scintillating lights according to the dose rates and monitor units of proton accelerator.
Asunto(s)
Luz , Fibras Ópticas , Compuestos Organotiofosforados , Terapia de Protones , Protones , AguaRESUMEN
In this study, we have fabricated a one-dimensional fiber-optic dosimeter for electron beam therapy dosimetry. Each fiber-optic dosimeter has an organic scintillator with a plastic optical fiber and it is embedded and arrayed in the plastic phantom to measure one-dimensional high energy electron beam profile of clinical linear accelerator. The scintillating lights generated from each sensor probe are guided by plastic optical fibers to the multi-channel photodiode amplifier system. We have measured one-dimensional electron beam profiles in a PMMA phantom according to different field sizes and energies of electron beam. Also, the isodose and three-dimensional percent depth dose curves in a PMMA phantom are obtained using a one-dimensional fiber-optic dosimeter with different electron beam energies.
Asunto(s)
Electrones , Luz , Fibras Ópticas , Aceleradores de Partículas , Plásticos , Polimetil MetacrilatoRESUMEN
In this review paper, basic configurations of gamma detectors in SPECT and PET systems were reviewed together with key performance parameters of the imaging system, such as the detection efficiency, the spatial resolution, the contrast resolution, and the data acquisition time for quick understanding of the system-component relationship and future design of advanced systems. Also key elements of SPECT and PET detectors, such as collimators, gamma detectors were discussed in conjunction with their current and future trend. Especially development trend of new scintillation crystals, innovative silicon-based photo-sensors and futuristic room- temperature semiconductor detectors were reviewed for researchers who are interested in the development of future nuclear medical imaging instruments.