Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Basic & Clinical Medicine ; (12): 141-146, 2024.
Artículo en Chino | WPRIM | ID: wpr-1018586

RESUMEN

Objective To investigate the role and regulatory mechanism of stress-inducing protein 1(SESN1)in liver gluconeogenesis of fasting mice.Methods RT-qPCR was used to detect mRNA expression of SESN1 in liver tissues of C57BL/6J mice and primary mouse hepatocytes treated with forskolin(Fsk)and dexamethasone(Dex).HepG2 cells were transfected with plasmids and the effects of SESN1 overexpression on mRNA expression of gluconeogenesis related genes PGC-1α,PEPCK and G6Pase was detected by RT-qPCR.The effect of SESN1 on the promoter activity of PGC-1α in HepG2 cells was studied using a dual luciferase reporter system.The effect of SESN1 on PGC-1α deacetylation was detected by overexpression of SESN1 and inhibition of SIRT1 expression.By knocking down SIRT1 expression,we detected whether it mediated the changes in mRNA levels of SESN1 in-duced gluconeogenesis related genes.Results The mRNA expression of SESN1 was significantly increased in liver tissues of starved C57BL/6J mice and in primary hepatocytes treated with Fsk and Dex(P<0.001).Over-expression of SESN1 in HepG2 cells promoted mRNA expression of PGC-1α,PEPCK and G6Pase(P<0.001)and promoter activity of PGC-1α(P<0.001).Over-expression of SESN1 decreased the acetylation level of PGC-1α in primary hepatocytes.Sirt family inhibitors NAM and shRNA adenovirus interfered with SIRT1 expression respective-ly,and antagonized the deacetylation effect of SESN1 on PGC-1α.The expression of PGC-1α,PEPCK and G6Pase induced by SIRT1 was also significantly impaired(P<0.000 1).Conclusions SESN1 regulates liver gluconeogene-sis in mice with a SIRT1-dependent mechanism.

2.
Artículo en Chino | WPRIM | ID: wpr-1028527

RESUMEN

Objective:To evaluate the role of the SIRT1/FoxO1 signaling pathway in trilobatin-induced reduction of cerebral ischemia-reperfusion (I/R) injury in rats.Methods:Eighty clean-grade healthy male Sprague-Dawley rats, aged 6-8 weeks, weighing 230-280 g, were divided into 4 groups ( n=20 each) using a random number table method: sham operation group (group S), cerebral I/R group (group CIR), trilobatin+ cerebral I/R group (group T) and trilobatin+ cerebral I/R+ SIRT1/FoxO1 signaling pathway inhibitor EX527 group (group E). The model of focal cerebral I/R injury was established by middle cerebral artery occlusion in anesthetized animals. Trilobatin 15 mg/kg was given by gavage twice a day for 3 consecutive days starting from 3 days before ischemia in T and E groups. EX527 5 mg/kg was intraperitoneally injected before each gavage in group E. Modified Longa scoring scale was used to assess neurological function at 24 h of reperfusion, then the rats were sacrificed and whole brain tissues were obtained for determination of cerebral infarct size (using TTC staining), apoptosis rate and level of reactive oxygen species (ROS) in the hippocampus (by flow cytometry), expression of SIRT1 and acetylated FOXO1 (Ac-FOXO1) (by Western blot) and contents of superoxide dismutase (SOD) and malondialdehyde (MDA) (by enzyme-linked immunosorbent assay) and for microscopic examination of pathological changes in the hippocampal CAI area after HE staining. Results:Compared with group S, Longa score, cerebral infarct size, apoptosis rate of hippocampal neurons, and levels of ROS and MDA were significantly increased, the content of SOD was decreased, the expression of SIRT1 was down-regulated, and the expression of Ac-FOXO1 was up-regulated in group CIR ( P<0.05). Compared with group CIR, Longa score, cerebral infarct size, apoptosis rate of hippocampal neurons, and levels of ROS and MDA were significantly decreased, the content of SOD was increased, the expression of SIRT1 was up-regulated, and the expression of Ac-FOXO1 was down-regulated in group T ( P<0.05). Compared with group T, Longa score, cerebral infarct size, apoptosis rate of hippocampal neurons, and levels of ROS and MDA were significantly increased, the content of SOD was decreased, the expression of SIRT1 was down-regulated, and the expression of Ac-FOXO1 was up-regulated in group E ( P<0.05). Conclusions:Trilobatin may inhibit oxidative stress responses and neuronal apoptosis in hippocampi by activating the SIRT1/FoxO1 signaling pathway, thus alleviating cerebral I/R injury in rats.

3.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);70(8): e20240314, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1569458

RESUMEN

SUMMARY OBJECTIVE: Placenta accreta spectrum (PAS) is defined as the attachment of the placenta to the uterine wall in varying degrees. However, the studies have explored that the underlying molecular mechanisms of the PAS are very limited. Sirtuins 1 (SIRT1) is associated with placental development by controlling trophoblast cell invasion and remodeling of spiral arteries. We aimed to determine the expression level of SIRT1 in placentas, and maternal and umbilical cord serum of patients with PAS. METHODS: In total, 30 individuals in control, 20 patients in the placenta previa group, and 30 patients in the PAS group were included in this study. The expression levels of SIRT1 in the placentas were determined by Western blot and immunohistochemistry. Serum levels of SIRT1 in maternal and umbilical cord blood were determined by ELISA. RESULTS: SIRT1 was significantly lower in placentas of the PAS. However, maternal and umbilical cord serum samples were not significantly different between groups. CONCLUSION: SIRT1 may play an important role in the pathogenesis of the PAS.

4.
Chinese Journal of Anesthesiology ; (12): 1386-1391, 2023.
Artículo en Chino | WPRIM | ID: wpr-1028479

RESUMEN

Objective:To evaluate the relationship between methyltransferase-like 3(METTL3)-mediated RNA N6-Methyladenosine (m6A) methylation modification and silent information regulator factor 1 (SIRT1) during sevoflurane post-conditioning-induced mitigation of cognitive impairments in a mouse model of hemorrhagic shock and resuscitation(HSR).Methods:Forty clean-grade healthy male C57BL/6 mice, aged 8-10 weeks, with a body weight ranging from 22-26 g, were assigned into 5 groups ( n=8 each) using a random number table method: sham operation group, HSR group, sevoflurane post-conditioning + HSR group (SP+ HSR group), over-expression of METTL3 gene rAAV + sevoflurane post-conditioning + HSR group (METTL3+ SP+ HSR group), and over-expression of METTL3 gene rAAV negative control + sevoflurane post-conditioning + HSR group (NC+ SP+ HSR group). The HSR model was established by withdrawing 40% of the total blood volume from mice through the right carotid artery within 30 min, followed by reinfusion of the withdrawn blood over 30 min 1 h later. The SP+ HSR group underwent HSR modeling first and then inhaled sevoflurane (end-tidal concentration 2.4%) for 30 min starting from the time point immediately after blood transfusion. The Sham group and HSR group inhaled a mixture of 70% O 2 and 30% CO 2 for 30 min at the corresponding time points. In METTL3+ SP+ HSR group and NC+ SP+ HSR group, the corresponding virus 450 nl was injected into bilateral hippocampus at 4 weeks before establishing the model.Morris water maze and novel object recognition tests were conducted at 72 h after developing the model to assess the learning and memory abilities. After the end of behavioral tests, the expression of METTL3 and SIRT1 in hippocampal tissues was detected using Western blot, the expression of SIRT1 mRNA was measured using qRT-PCR, and the methylation of RNA m6A was detected using Dot blot. Results:Compared to Sham group, the escape latency was significantly prolonged at 1-6 days, the time spent in the target quadrant was shortened, the number of crossing the original platform was decreased, the novel object recognition index was decreased, the expression of METTL3 was up-regulated, the expression of SIRT1 protein and mRNA was down-regulated, and the methylation of RNA m6A was increased in HSR group( P<0.05). Compared to HSR group, the escape latency was significantly shortened at 1-6 days, the time spent in the target quadrant was prolonged, the number of crossing the original platform was increased, the novel object recognition index was increased, the expression of METTL3 was up-regulated, the expression of SIRT1 protein and mRNA was down-regulated, and the methylation of RNA m6A was increased, the novel object recognition index was increased, the expression of METTL3 was down-regulated, the expression of SIRT1 protein and mRNA was up-regulated, and the methylation of RNA m6A was decreased in SP+ HSR group( P<0.05). Compared to SP+ HSR group, the escape latency was significantly prolonged at 2-6 days, the time spent in the target quadrant was shortened, the number of crossing the original platform was decreased, the novel object recognition index was decreased, the expression of METTL3 was up-regulated, the expression of SIRT1 protein and mRNA was down-regulated, and the methylation of RNA m6A was increased in METTL3+ SP+ HSR group( P<0.05), and no significant change was found in the aforementioned indicators in NC+ SP+ HSR group ( P>0.05). Conclusions:The mechanism by which sevoflurane post-conditioning alleviates cognitive dysfunction is associated with down-regulation of METTL3 expression, reduction of RNA m6A methylation, and up-regulation of SIRT1 expression in HSR mice.

5.
Artículo en Chino | WPRIM | ID: wpr-994161

RESUMEN

Objective:To evaluate the role of Sirtuin 1/nuclear factor κB (SIRT1/NF-κB) signaling pathway in mild hypothermia-induced promotion of microglial polarization during oxygen-glucose deprivation and restoration (OGD/R).Methods:The well-grown BV2 microglia were divided into 4 groups ( n=36 each) using the random number table method: control group (group C), OGD/R group (group O), mild hypothermia group (group M), and mild hypothermia+ SIRT1 specific inhibitor EX527 group (group ME). Cells in group C were commonly cultured without any treatment. Cells in group O were subjected to 3 h of OGD followed by 21 h of restoration of O 2-glucose supply at 37 ℃. Cells in group M were subjected to 3 h of OGD followed by 21 h of restoration of O 2-glucose supply at 33 ℃. Cells in group ME were co-cultured with inhibitor EX527 (final concentration 5 nmol/L) for 12 h in the medium before OGD/R, and the other procedures were conducted as previously described in group M. The cell survival rate was detected by CCK-8 assay. The levels of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and interleukin-10 (IL-10) in supernatant were detected by enzyme-linked immunosorbent assay. The expression of CD206, CD32, inducible nitric oxide synthase (iNOS) and arginine synthase 1 (Arg-1) mRNA was detected by quantitative real-time polymerase chain reaction. The expression of CD206 and CD32 was detected by immunofluorescent staining. The expression of iNOS, Arg-1, SIRT1, NF-κB p65 (p65) and acetylated NF-κB (Ac-p65) was detected by Western blot. Results:Compared with group C, the cell survival rate was significantly decreased, the concentrations of TNF-α, IL-6 and IL-10 in the supernatant were increased, the expression of CD206, Arg-1, CD32 and iNOS was up-regulated, the expression of SIRT1 was down-regulated, and the Ac-p65/p65 ratio was increased in group O ( P<0.05). Compared with group O, the cell survival rate was significantly increased, the concentrations of TNF-α and IL-6 in the supernatant were decreased, the concentration of IL-10 was increased, the expression of CD206, Arg-1 and SIRT1 was up-regulated, the expression of CD32 and iNOS was down-regulated, and the Ac-p65/p65 ratio was decreased in group M ( P<0.05). Compared with group M, the cell survival rate was significantly decreased, the concentrations of TNF-α and IL-6 in the supernatant were increased, the concentration of IL-10 was decreased, the expression of CD206, Arg-1 and SIRT1 was down-regulated, the expression of CD32 and iNOS was up-regulated, and the Ac-p65/p65 ratio was increased in group ME ( P<0.05). Conclusions:SIRT1/NF-κB signaling pathway is involved in mild hypothermia-induced promotion of microglial polarization during OGD/R.

6.
Artículo en Chino | WPRIM | ID: wpr-994178

RESUMEN

Objective:To evaluate the role of silent information regulator sirtuin 1 (SIRT1) in mitochondrial dysfunction in mice with lipopolysaccharide (LPS)-induced brain injury.Methods:Eighty clean-grade male C57BL/6 mice, aged 6-8 weeks, were divided into 4 groups ( n=20 each) by the random number table method: control group (group C), LPS-induced brain injury group (LPS group), LPS-induced brain injury plus SIRT1 inhibitor EX527 group (LPS+ E group), and LPS-induced brain injury plus SIRT1 agonist SRT1720 group (LPS+ S group). Brain injury was induced by intravenous injection of LPS 10 mg/kg. EX527 10 mg/kg was intraperitoneally injected at 72 h before LPS injection in group LPS+ E, and the equal volume of dimethyl sulfoxide was intraperitoneally injected instead in the other three groups. SRT1720 100 mg/kg was intraperitoneally injected at 30 min before LPS injection in group LPS+ S, and the equal volume of dimethyl sulfoxide was intraperitoneally injected instead in the other three groups. The novel object recognition test was performed at 24 h after LPS injection, then the mice were sacrificed, and hippocampal tissues were harvested for determination of the number of the normal neurons in the hippocampal CA1 area, ATP content and activities of mitochondrial respiratory chain complexes Ⅰ, Ⅱ, Ⅲ and Ⅳ (by spectrophotometry), and mitochondrial membrane potential (MMP) (by Jc-1 staining) and for microscopic examination of pathological changes (by Nissl staining) and ultrastructure of neuronal mitochondria (with a transmission electron microscope). Results:Compared with group C, the preference index in novel object recognition, normal neuron count, activities of mitochondrial respiratory chain complexes Ⅰ, Ⅱ, Ⅲ and Ⅳ, MMP and ATP content were significantly decreased ( P<0.05), damage to hippocampal neurons was found, mitochondrial swelling was observed and cristae structure ruptured in LPS, LPS+ S and LPS+ E groups. Compared with group LPS, the preference index in novel object recognition, activities of mitochondrial respiratory chain complexes, MMP and ATP content were significantly decreased ( P<0.05), neuronal damage was aggravated, the mitochondrial swelling and fracture of crista structure were accentuated in group LPS+ E; the preference index in novel object recognition, activities of mitochondrial respiratory chain complexes, MMP and ATP content were significantly increased ( P<0.05), neuronal damage was alleviated, and the mitochondrial swelling and fracture of crista structure were ameliorated in group LPS+ S. Conclusions:Activation of SIRT1 can improve mitochondrial dysfunction and alleviate LPS-induced brain injury in mice.

7.
Artículo en Chino | WPRIM | ID: wpr-994190

RESUMEN

Objective:To evaluate the effect of exosomes derived from bone mesenchymal stem cells (BMSCs-EXO) on the postoperative cognitive function and silent infomation regulator 1 (SIRT1)/ nuclear factor kappa B (NF-κB) signaling pathway in aged mice.Methods:BMSCs-EXO were isolated by differential centrifugation method and then identified. Twenty healthy male C57BL/6 aged mice, aged 18 months, weighing 35-40 g, were divided into 4 groups ( n=5 each) using a random number table method: sham operation group (Sham group), operation group (O group), BMSCs-EXO group and EX527 (SIRT1 inhibitor)group. The abdomen regions were shaved for sterilization without exploratory laparotomy in Sham group. Exploratory laparotomy was performed in O group. BMSCs-EXO 50 μg was injected through the tail vein at 1 h before surgery in BMSCs-EXO group. EX527 5 mg/kg was intraperitoneally injected daily at 1-3 days before surgery, and BMSCs-EXO 50 μg was injected through the tail vein at 1 h before surgery in EX527 group. Morris water maze test was used to evaluate the learning and memory ability for 5 consecutive days staring from the 1st day after surgery. Mice were sacrificed at 1 h after the end of Morris water maze test on day 5 after surgery, and the hippocampal tissues were collected for observation of the pathological changes of hippocampal CA1 region and for determination of the expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and IL-1β mRNA (quantitative real-time polymerase chain reaction) and SIRT1 and NF-κB p65 (by Western blot). Results:Compared with Sham group, the escape latency was significantly prolonged, the times of original platform crossing were decreased, the swimming time spent in the original platform quadrant was shortened, the expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and IL-1β mRNA was up-regulated, the SIRT1 expression was down-regulated, the NF-κB p65 expression was up-regulated ( P<0.05), and the pathological changes of hippocampal tissues in CA1 region were found in O group. Compared with O group, the escape latency was significantly shortened, the times of original platform crossing were increased, the swimming time spent in the original platform quadrant was prolonged, the expression of TNF-α, IL-6 and IL-1β mRNA was down-regulated, the expression of SIRT1 was up-regulated, the expression of NF-κB p65 was down-regulated ( P<0.05), and the pathological changes of hippocampal tissues in CA1 region were significantly attenuated in BMSCs-EXO group ( P<0.05). Compared with BMSCs-EXO group, the escape latency was significantly prolonged, the times of original platform crossing were decreased, the swimming time spent in the original platform quadrant was shortened, the expression of TNF-α, IL-6 and IL-1β mRNA was up-regulated, the SIRT1 expression was down-regulated, the NF-κB p65 expression was up-regulated ( P<0.05), and the pathological changes of hippocampal tissues in CA1 region were accentuated in EX527 group. Conclusions:BMSCs-EXO can improve the postoperative cognitive function in aged mice, and the mechanism may be associated with the activation of SIRT1/NF-κB signaling pathway.

8.
Artículo en Chino | WPRIM | ID: wpr-994202

RESUMEN

Objective:To evaluate the relationship between microRNA-27a (miR-27a) and silent information regulator 1 (SIRT1) during myocardial ischemia-reperfusion (I/R) in rats.Methods:Fifty clean-grade healthy male Sprague-Dawley rats, aged 2-3 months, weighing 220-280 g, were divided into 5 groups ( n=10 each) by the random number table method: sham operation group (Sham group), myocardial I/R group (I/R group), AAV9-miR-27a overexpression + myocardial I/R group (AAV+ I/R group), miR-27a antagomir + myocardial I/R group (AG+ I/R group) and AAV9-miR-27a negative control+ myocardial I/R group (NC+ I/R group). The myocardial I/R injury model was prepared by ligating the anterior descending branch of the left coronary artery for 30 min followed by 120 min reperfusion. At day 14 before ischemia, AAV9-miRNA-27a adeno-associated virus 2×10 11 v. g was injected via the tail vein in AAV+ I/R group, and AAV9-miR-27a NC 2×10 11 v. g was injected via the tail vein in NC+ I/R group. miR-27a antagomir 10 mg/kg was injected via the tail vein once a day at 3 days before ischemia in AG+ I/R group. At the end of 120 min of reperfusion, serum cardiac troponin T(cTnT), creatine kinase isoenzymes (CK-MB) and lactic dehydrogenase (LDH) concentrations and contents of glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) in myocardial tissues were determined by enzyme-linked immunosorbent assay, the percentage of myocardial infarct volume by TTC staining, the expression of miR-27a in myocardial tissues by quantitative real-time polymerase chain reaction, and the expression of SIRT1 in myocardial tissues by Western blot. Results:Compared with Sham group, the percentage of myocardial infarct volume and serum concentrations of cTnT, CK-MB and LDH were significantly increased, the contents of GSH and SOD in myocardial tissues were decreased, MDA contents were increased, miR-27a expression was up-regulated, and SIRT1 expression was down-regulated in I/R group ( P<0.05). Compared with I/R group, the percentage of myocardial infarct volume and serum concentrations of cTnT, CK-MB and LDH were significantly increased, the contents of GSH and SOD in myocardial tissues were decreased, MDA contents were increased, miR-27a expression was up-regulated, and SIRT1 expression was down-regulated in AAV+ I/R, and the percentage of myocardial infarct volume and serum concentrations of cTnT, CK-MB and LDH were significantly decreased, the contents of GSH and SOD in myocardial tissues were increased, MDA contents were decreased, miR-27a expression was down-regulated, and SIRT1 expression was up-regulated in AG+ I/R group ( P<0.05), and no significant change was found in the parameters mentioned above in NC+ I/R group ( P>0.05). Compared with AAV+ I/R group, the percentage of myocardial infarct volume and serum concentrations of cTnT, CK-MB and LDH were significantly decreased, the contents of GSH and SOD in myocardial tissues were increased, MDA contents were decreased, miR-27a expression was down-regulated, and SIRT1 expression was up-regulated in AG+ I/R group ( P<0.05). Conclusions:miR-27a is involved in the pathophysiological mechanism underlying myocardial I/R injury probably through inhibition of SIRT1 expression in rats.

9.
Artículo en Chino | WPRIM | ID: wpr-994214

RESUMEN

Objective:To evaluate the relationship between silent information regulator 1 (SIRT1) and ferroptosis during curcumin-induced reduction of acute lung injury in a mouse model of sepsis.Methods:One hundred and fifty-two SPF-grade male C57BL/6J mice, aged 8 weeks, weighing 23-27 g, were divided into 4 groups ( n=38 each) using a random number table method: sham operation group (C group), sepsis group (S group), curcumin group (Cur group) and curcumin plus SIRT1 inhibitor EX527 group (CE group). Curcumin 200 mg/kg was administered by intragastric gavage every day in Cur group. Curcumin 200 mg/kg was administered by intragastric gavage every day and EX527 5 mg/kg was intraperitoneally injected in CE group. The equal volume of solvent dimethyl sulfoxide (DMSO) was given in C group and S group. Sepsis model was developed by cecal ligation and puncture (CLP) after 5 days of consecutive administration in anesthetized animals. Twenty mice in each group were randomly selected to observe the survival condition within 7 days after CLP. The bronchoalveolar lavage fluid (BALF) was collected at 24 h after developing the model to determine the concentrations of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), IL-6 and IL-18 (by enzyme-linked immunosorbent assay), and the lung tissues were obtained for microscopic examination of the pathological changes which were scored and for determination of wet-to-dry lung weight (W/D) ratio, contents of glutathione (GSH), malondialdehyde (MDA) and iron (by colorimetry), and expression of SIRT1, glutathione peroxidase 4 (GPX4) and Acyl-CoA synthetase long chain family member 4 (ACSL4) (by Western blot). Results:Compared with C group, the 7-day survival rate after CLP was significantly decreased, the concentrations of TNF-α, IL-1β, IL-6 and IL-18 in BALF, W/D ratio and lung injury score were increased, the content of GSH in lung tissues was decreased, the contents of MDA and iron were increased, the expression of SIRT1 and GPX4 was down-regulated, and the expression of ACSL4 was up-regulated in S group ( P<0.05). Compared with S group, the 7-day survival rate after CLP was significantly increased, the concentrations of TNF-α, IL-1β, IL-6 and IL-18 in BALF, W/D ratio and lung injury score were decreased, the content of GSH was increased, the contents of MDA and iron were decreased, the expression of SIRT1 and GPX4 was up-regulated, and the expression of ACSL4 was down-regulated in Cur group ( P<0.05). Compared with Cur group, the 7-day survival rate after CLP was significantly decreased, the concentrations of TNF-α, IL-1β, IL-6 and IL-18 in BALF, W/D ratio and lung injury score were increased, the content of GSH was decreased, the contents of MDA and iron were increased, the expression of SIRT1 and GPX4 was down-regulated, and the expression of ACSL4 was up-regulated in CE group ( P<0.05). Conclusions:The mechanism by which curcumin attenuates acute lung injury may be related to activation of SIRT1 and further inhibition of ferroptosis in mice.

10.
Artículo en Chino | WPRIM | ID: wpr-994257

RESUMEN

Objective:To evaluate the role of silent information regulator-1 (SIRT1)/nucleotide-binding domain (NOD)-like receptor protein-3 (NLRP3) signaling pathway in sevoflurane postconditioning-induced attenuation of oxygen-glucose deprivation and restoration (OGD/R) injury in mouse hippocampal neuronal cell line (HT22) cells.Methods:The HT22 cells were seeded in a culture plate (96-well plate, 100 μl/well; 6-well plate, 2 ml/well) at the density of 5×10 4 cells/ml or in a culture dish (6 cm in diameter) and then divided into 4 groups ( n=24 each) using a random number table method: control group (Control group), OGD/R group, sevoflurane postconditioning group (SPC group), and SIRT1 small interfering RNA group (si-SIRT 1 group). In Control group, cells were cultured at 37 ℃ in normal culture atmosphere. In OGD/R group, the culture medium was replaced with glucose-free serum-free culture medium, and cells were exposed to 95% N 2+ 5% CO 2 for 4 h in an incubator at 37 ℃, and then the glucose-free serum-free culture medium was replaced with the primary culture medium, and cells were cultured for 24 h at 37 ℃ in normal culture atmosphere. In SPC group, the glucose-free serum-free culture medium was replaced with the primary cell culture medium after 4-h oxygen and glucose deprivation, the cells were put into the hypoxia incubator chamber which was filled with 2% sevoflurane immediately after start of reoxygenation, then the chamber was placed in an incubator and the cells were cultured for 1 h at 37 ℃ in normal culture atmosphere, and finally the cells were removed from the chamber and cultured for 23 h at 37 ℃ in normal culture atmosphere. In si-SIRT1 group, SIRT1 small interfering RNA 150 pmol was added at 24 h before surgery, cells were then incubated, and the other procedures were the same as those previously described in group SPC. The cell survival rate was determined using MTT assay. TUNEL assay was used to detect cell apoptosis, and the apoptosis rate was calculated. The expression of SIRT1, NLRP3, IL-1β and IL-18 mRNA was determined using polymerase chain reaction. The expression of SIRT1, NLRP3, interleukin-1beta (IL-1β) and IL-18 was detected using Western blot. Results:Compared with Control group, the cell survival rate was significantly decreased, the apoptosis rate was increased, the expression of SIRT1 protein and mRNA was down-regulated, and the expression of NLRP3, IL-1β and IL-18 protein and mRNA was up-regulated in OGD/R group ( P<0.05). Compared with OGD/R group, the cell survival rate was significantly increased, the apoptosis rate was decreased, the expression of SIRT1 protein and mRNA was up-regulated, and the expression of NLRP3, IL-1β and IL-18 protein and mRNA was down-regulated in SPC group ( P<0.05). Compared with SPC group, the cell survival rate was significantly decreased, the apoptosis rate was increased, the expression of SIRT1 protein and mRNA was down-regulated, and the expression of NLRP3, IL-1β and IL-18 protein and mRNA was up-regulated in si-SIRT1 group ( P<0.05). Conclusions:Activation of SIRT1-NLRP3 signaling pathway is involved in sevoflurane postconditioning-induced attenuation of OGD/R injury in HT22 cells.

11.
Artículo en Chino | WPRIM | ID: wpr-996472

RESUMEN

@#Objective    To explore the differential expression of Sirtuin1 (SIRT1) in type A aortic dissection at diverse ages. Methods    The expression of SIRT1 and monocyte chemoattractant protein-1 (MCP-1) in aortic tissue of the patients with type A aortic dissection (an aortic dissection group) and coronary heart disease (a control group) from 2019 to 2020 in the First Hospital of China Medical University was analyzed. In each group, the patients were divided into 3 subgroups according to the age (a younger subgroup, <45 years; a middle age subgroup, 45-60 years; an elderly subgroup, > Compared with the control group, SIRT1 protein expression decreased significantly in the aortic dissection group (the younger group: 0.64±0.18 vs. 1.18±0.47; the middle age group: 0.43±0.26 vs. 0.69±0.32; the elderly group: 0.31±0.24 vs. 0.45±0.29, P<0.01). The Western blotting results showed that the expression of SIRT1 protein in the aortic dissection group decreased with age (P<0.01). The MCP-1 protein expression of younger and middle age patients in the aortic dissection group was increased compared with that in the control group (the younger group: 0.65±0.27 vs. 0.38±0.22; the middle age group: 1.08±0.30 vs. 0.46±0.36, P<0.001). MCP-1 expression increased with age (P<0.01). The result of immunohistochemical staining for SIRT1 protein was similar to that of Western blotting. Conclusion    The expression of SIRT1 decreases in patients with aortic dissection disease, and declines with age. SIRT1 may play an important role in the treatment and screening of type A aortic dissection.60 years). The quantitative real-time PCR, Western blotting and immunochemical stainning were used to detect the mRNA or protein expression of SIRT1 and MCP-1. Results    A total of 60 patients were included in each group, including 79 males and 41 females. There were 20 patients in the yonger, middle age and elderly subgroups for the two groups, respectively. Compared with the control group, the expression of SIRT1 mRNA decreased in the aortic dissection group (the younger subgroup: 4.54±1.52 vs. 8.78±2.57; the middle age group: 2.70±1.50 vs. 5.74±1.07; the elderly group: 1.41±1.33 vs. 3.09±1.14, P<0.001). Meanwhile, SIRT1 mRNA in the aortic dissection group declined with age (P<0.01).

12.
Artículo en Chino | WPRIM | ID: wpr-1038358

RESUMEN

Objective @# To investigate the effect and signaling mechanism of terpinen-4-ol (T4O) on vascular oxida- tive stress injury in mice with chronic kidney disease ( CKD) .@*Methods @# A CKD mice model was prepared using high phosphorus diet combined with adenine,and the normal group was given an equal volume of saline gavage.The CKD model with low expression of SIRT1 in vivo was established by tail vein injection of lentiviral SIRT1 RNAi for the study of signaling mechanism.The administration groups were given T4O at low and high doses ( 10 mg / kg and 20 mg / kg) for 6 weeks by continuous gavage.Serum was collected to detect urea nitrogen ( BUN) and creatinine ( CRE) levels,and HE staining was used to observe the morphology of blood vessels in the thoracic aorta of mice expression. @*Results @# T4O reduced serum BUN and CRE levels in CKD mice to improve renal function,improved kidney and thoracic aortic vascular morphology,reduced vascular tissue MDA content,increased SOD content,and reduced ROS levels ; T4O intervention promoted Nrf2 nuclear translocation and upregulated HO-1,NQO-1 and SIRT1 protein expression ; LV-SIRT1 RNAi + T4O group was able to inhibit the effect of T4O on CKD-induced MDA and SOD levels,partially counteracting the effect of T4O in upregulating Nrf2 nuclear translocation and the protein expression levels of SIRT1,HO-1 and NQO-1.@*Conclusion @#T4O has a protective effect against oxidative stress in- jury in the thoracic aorta of CKD mice,and its molecular signaling mechanism may be related to the level of drug- regulated SIRT1 / Nrf2 cascade signaling.

13.
Artículo en Chino | WPRIM | ID: wpr-1038486

RESUMEN

Objective@#To investigate the mechanism of resveratrol promoting fibronectin type Ⅲ domain-containing 5 (FNDC5) degradation in skeletal muscle of male obese mice.@*Methods@#Six-week-old male C57BL /6 mice were randomly divided into three groups : standard control diet ( SCD) ,high-fat diet ( HFD) and high-fat diet treated with resveratrol (HFD + RES) .HFD + RES group was intervened with resveratrol via gavage [400 mg / kg · d) ] while fed HFD for 20 weeks.The body mass,serum TG,TC,LDL-C and HDL-C levels were detected.The pathological changes in skeletal muscle were detected by HE staining.The expression of FNDC5,SIRT1,SIRT2,LC3, p62,Beclin-1,ATG5,ATG7 was assessed by immunohistochemistry,RT-PCR and Western blot respectively. @*Results@#The body mass ,serum TG ,TC and LDL-C levels increased significantly ,meanwhile HDL-C levels decreased in HFD group.Lipid deposition between skeletal muscle fibers were obvious in HFD group.The immuno- histochemistry results showed that protein expression levels of SIRT1,SIRT2 and LC3 obviously decreased,while the protein levels of FNDC5 and p62 obviously increased.The expression levels of FNDC5 significantly increased, while the gene expression levels of SIRT1,SIRT2,LC3,Atg7 and Beclin-1 obviously decreased.All these responses were attenuated by treatment with RES.@*Conclusion@#RES has obvious effects of lipid-lowering and promoting FNDC5 degradation in skeletal muscle tissues,which may be related with SIRT1 and SIRT2-induced autophagy, thus resulting in degradation of FNDC5 .

14.
Artículo en Chino | WPRIM | ID: wpr-989323

RESUMEN

Objective:To investigate the effect of Sirtuin 1 (SIRT1) on subarachnoid hemorrhage (SAH) and its possible mechanism.Methods:A mouse model of SAH was constructed by internal carotid artery puncture. The protein and mRNA expression levels of SIRT1 at 0, 3, 6, 12, 24, 48, and 72 h were detected by Western Blot and qRT-PCR. A Western Blot assay was used to examine SIRT1 and the expression levels of endoplasmic reticulum stress-related markers GRP78, p-PERK/PERK, p-eIF2α/eIF2α, and CHOP after administration of a SIRT1 inhibitor or SIRT1 si-RNA. At 24 h after SAH, subarachnoid hemorrhage volume, neurological function score, brain water content, and blood-brain barrier integrity were measured.Results:The highest expression of SIRT1 protein and mRNA was observed at 24 h compared with other time points, and the differences were statistically significant (all P < 0.001). Inhibition of SIRT1 expression leads to increased expression of endoplasmic reticulum stress-related proteins GRP78, p-PERK/PERK, p-eIF2α/eIF2α, and CHOP, exacerbating hemorrhage and brain water content, disrupting blood-brain barrier integrity, and significantly reducing neurological function scores. Conclusions:Inhibition of SIRT1 expression significantly increased the endoplasmic reticulum response to excitation and exacerbated early brain injury after SAH.

15.
Braz. J. Pharm. Sci. (Online) ; 59: e23002, 2023. graf
Artículo en Inglés | LILACS | ID: biblio-1520312

RESUMEN

Abstract This study aimed to investigate the role and signaling pathways of β3-AR in myocardial ischemia/reperfusion (I/R) injury, which is one of the leading causes of death worldwide. 47 male rats were randomly divided into two main groups to evaluate infarct size and molecular parameters. Rats in both groups were randomly divided into 4 groups. Control (sham), I/R (30 min ischemia/120 min reperfusion), BRL37344 (BRL) (A) (5 µg/kg single-dose pre-treatment (preT) before I/R) and BRL (B) (5 µg/kg/day preT for 10 days before I/R). Infarct size was determined with triphenyltetrazolium chloride staining and analyzed with ImageJ program. The levels of AMPK, SIRT1, mTOR, and p70SK6 responsible for cellular energy and autophagy were evaluated by western blot. Infarct size increased in the I/R group (44.84 ± 1.47%) and reduced in the single-dose and 10-day BRL-treated groups (32.22 ± 1.57%, 29.65 ± 0.55%; respectively). AMPK and SIRT1 levels were decreased by I/R but improved in the treatment groups. While mTOR and p70S6K levels increased in the I/R group, they decreased with BRL preT. BRL preT protects the heart against I/R injury. These beneficial effects are mediated in part by activation of AMPK and SIRT1, inhibition of mTOR and p70S6K, and consequently protected autophagy.


Asunto(s)
Animales , Masculino , Ratas , Autofagia , Daño por Reperfusión Miocárdica/patología , Agonistas Adrenérgicos , Isquemia/patología , Western Blotting/métodos , Isquemia Miocárdica/patología , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Sirtuina 1/clasificación , Corazón/fisiopatología , Infarto
16.
Artículo en Chino | WPRIM | ID: wpr-957537

RESUMEN

Objective:To evaluate the role of silencing regulatory protein (SIRT1) and its associated microRNAs (miRNAs) in dexmedetomidine-induced attenuation of renal damage in diabetic mice.Methods:SPF grade C57 male mice, aged 8 weeks, in which diabetes mellitus model was developed by intraperitoneal injection of 1% streptozotocin, were used.Thirty mice in which the model was successfully developed were divided into 5 groups ( n=6 each) using the random number table method: diabetes mellitus group (D group), diabetes mellitus + dexmedetomidine group (DD group), diabetes mellitus + dexmedetomidine + EX527 group (DDE group), diabetes mellitus + dexmedetomidine + miR-34a-3p-agomir group (DDH group), and diabetes mellitus + dexmedetomidine + miR-34a-3p-agomirNC group (DDC group). Six normal mice were selected as control group (C group). Dexmedetomidine 40 μg/kg was intraperitoneally injected once every 2 h, 3 times in total in DD, DDE, DDH and DDC groups.miR-34a-3p-agomir and miR-34a-3p-agomirNC 2.5 mmol were intraperitoneally injected via the tail vein at 72 h before dexmedetomidine administration once every 3 days, 2 times in total in DDH and DDC groups, respectively.SIRT1 inhibitor EX527 10 mg/kg was intraperitoneally injected at 1 h before dexmedetomidine administration in group DDE.At 24 h after the end of administration, serum concentrations of IL-6, IL-18, Cr and BUN, contents of nitric oxide (NO) and total antioxidant capacity (T-AOC), ROS activity, and expression of SIRT1, FoxO3a and P53 protein and mRNA, and expression of miR-217, miR-138 and miR-34a in renal tissues were determined. Results:Compared with group C, the serum IL-6, IL-18, Cr and BUN concentrations, contents of T-AOC and NO, and ROS activity were significantly increased, the expression of P53 protein and mRNA, miR-34a, miR-217 and miR-138 was up-regulated, and the expression of SIRT1 and FoxO3a protein and mRNA was down-regulated in group D ( P<0.05). Compared with group D, serum IL-6, IL-18, Cr and BUN concentrations, ROS activity and NO content were significantly decreased, T-AOC content was increased, the expression of SIRT1 and FoxO3a protein and mRNA was up-regulated, and the expression of miR-34a was down-regulated in group DD ( P<0.05). Compared with group DD, the serum IL-6, IL-18, Cr and BUN concentrations, NO content and ROS activity were significantly increased, T-AOC content was decreased, and the expression of SIRT1 and FoxO3a protein and mRNA was down-regulated in group DDE and group DDH ( P<0.05), no significant change was found in the expression of P53 protein and mRNA, miR-217, miR-34a and miR-138 in group DDE ( P>0.05), and the expression of P53 protein and mRNA and miR-34a was significantly up-regulated in group DDH ( P<0.05). Conclusions:The mechanism by which dexmedetomidine attenuates renal injury may be related to down-regulation of miR-34a expression, which further up-regulates SIRT1/FoxO3 expression and decreases oxidative stress in diabetic mice.

17.
Artículo en Chino | WPRIM | ID: wpr-907413

RESUMEN

Objective:To investigate the effect of oleanolic acid (OA) on Sirtuin1 (SIRT1)-mediated high-mobility group box 1(HMGB1) deacetylation in the early brain injury after subarachnoid hemorrhage (SAH).Methods:A total of 176 male Sprague-Dawley rats were randomly divided into Sham operation (Sham group) ( n=48), SAH group ( n=48), OA group ( n=48) and Sirtinol group ( n=32). Rats in the SAH group, OA group and the Sirtinol group all adopted internal carotid artery puncture to construct SAH model, while rats in the sham group did not adopt puncture. One hour after modeling, the rats in the OA group were given intraperitoneal injection of OA (20 mg/kg), and the rats in the Sirtinol group were given intracerebroventricular injection of Sirtinol (2 mmol/L, 30 μL/kg). The rats in the sham group and SAH group were injected with equal volumes of sodium chloride injection. The SAH score and neurological score were performed 24 h after SAH, and the water content in the brain tissue and Evans blue exudation rate were measured. The expressions of HMGB1, SIRT1 and acetylated HMGB1 proteins in the brain tissue of rats were detected by Western Blot. The expression of HMGB1 mRNA in the brain of the rats was detected by quantitative real-time PCR. The distribution of HMGB1 protein in the brain of the rats was observed by immunofluorescence staining. TUNEL staining was used to observe the neuronal apoptosis in the brain tissue of the rats. Results:Compared with the SAH group, the SAH score of the OA group was significantly reduced ( P<0.001), the Garcia score was increased ( P<0.01), and the brain water content and Evans blue exudation rate were both reduced (all P<0.01). Compared with the OA group, the SAH score of the Sirtinol group was increased ( P<0.01), the Garcia score was significantly decreased ( P<0.001), and the brain water content and Evans blue exudation rate were both increased (all P<0.01). The results of Western Blot and real-time fluorescent quantitative PCR showed that, compared with the SAH group, the protein level ( P<0.01) and mRNA level ( P<0.05) of HMGB1 in the OA group were decreased, the expression of SIRT1 protein was significantly increased ( P<0.001), and the expression of acetylated HMGB1 protein was decreased ( P<0.01). Immunofluorescence staining showed that OA inhibited the migration of HMGB1 protein from the nucleus to the cytoplasm. TUNEL staining showed that OA could effectively reduce the number of TUNEL-positive cells. Compared with the OA group, Sirtinol significantly increased the number of TUNEL-positive cells. Conclusions:OA can reduce the release of HMGB1 through the SIRT1/HMGB1 pathway, thereby protecting the early brain injury after SAH.

18.
Artículo en Chino | WPRIM | ID: wpr-883368

RESUMEN

Objective:To investigate the potential anti-aging mechanism of 9-hydroxy-6,7-dimethoxydalbergiquinol (HDDQ) on hydrogen peroxide (H2O2)-induced oxidative stress in human dermal fibroblasts (HDFs). Methods:The effect of HDDQ on cell viability was assessed by MTT assay, and the effects of HDDQ on senescence-like phenotypes were determined by senescence-associated β-galactosidase (SA-β-gal) staining, Western blotting analysis, and a cell proliferation assay. The expression level and activity of sirtuin-1 (SIRT1) induced by HDDQ were also measured. Results:HDDQ reversed senescence-like phenotypes in the oxidant-challenged model, through reducing SA-β-gal activity and promoting cell growth. Meanwhile, decreases in ac-p53, p21Cip1/WAF1, and p16Ink4a and an increase in pRb were observed. HDDQ induced the expression of SIRT1 in a concentration- and time-dependent manner. Moreover, HDDQ inhibited H2O2-induced phosphorylation of Akt by SIRT1 up-regulation and reduced SA-β-gal staining. Conclusions:HDDQ inhibits H2O2-induced premature senescence and upregulation of SIRT1 expression plays a vital role in the inhibition of the senescence phenotype in HDFs.

19.
Artículo en Chino | WPRIM | ID: wpr-911186

RESUMEN

Objective:To evaluate the relationship between silence information regulator 1 (SIRT1) and signal transducers and activators of transcription 3 (STAT3) acetylation during high glucose-induced cardiac microvascular endothelial cell injury.Methods:Cardiac microvascular endothelial cells of Sprague-Dawley rats were cultured.The cells at the logarithmic growth phase were selected and divided into 3 groups ( n=24 each) using a random number table method: control group (C group), high glucose group (HG group) and high glucose+ SIRT1 agonist SRT1720 group (HG+ SRT group). The cardiac microvascular endothelial cells were seeded in a 6- or 96-well cell culture plate at a density of 2×10 5 cells/ml.When the cell density reached 50%, the culture medium was then replaced with high-glucose (glucose 33 mmol/L) DMEM culture medium containing with 10% fetal bovine serum and 1% double antibody in HG and HG+ SRT groups.In group HG+ SRT, 20 μmol/L SRT1720 was added simultaneously, and the cells were cultured at 37 ℃ in an incubator with 5% CO 2 for 24 h. The cell viability was determined by CCK-8 assay, the activity of superoxide dismutase (SOD) was detected using a spectrophotometer, the levels of lactic dehydrogenase (LDH), interleukin-6 (IL-6) and tumor necrosis factor-β (TNF-β) in the supernatant were detected by enzyme-linked immunosorbent assay, and the expression of SIRT1, acetylated STAT3 (ac-STAT3) and phosphorylated STAT3 (p-STAT3) was determined by Western blot. Results:Compared with C group, the cell viability and SOD activity were significantly decreased, levels of LDH, IL-6 and TNF-β in the supernatant were increased, expression of SIRT1 was down-regulated, and expression of ac-STAT3 and p-STAT3 was up-regulated in group HG and group HG+ SRT ( P<0.05). Compared with group HG, the cell viability and SOD activity were significantly increased, levels of LDH, IL-6 and TNF-β in the supernatant were decreased, expression of SIRT1 was up-regulated, and expression of ac-STAT3 and p-STAT3 was down-regulated in group HG+ SRT ( P<0.05). Conclusion:SIRT1 can alleviate high glucose-induced cardiac microvascular endothelial cell injury by promoting STAT3 deacetylation.

20.
Chinese Journal of Anesthesiology ; (12): 1133-1137, 2021.
Artículo en Chino | WPRIM | ID: wpr-911333

RESUMEN

Objective:To evaluate the role of nicotinamide adenine dinucleotide (NAD + )-mediated deacetylation activity of silent information regulator 1 (SIRT1) in endotoxin-induced acute lung injury (ALI) in mice. Methods:Twenty-five SPF clean-grade healthy male C57BL/6 mice including 10 wild-type (WT) and 15 NMNAT1 conditional-knockout (KO) mice, aged 6-8 weeks, weighing 20-25 g, were selected.The WT mice were divided into 2 groups ( n=5 each) using a random number table method: control group (group WT+ C) and ALI group (group WT+ ALI). The KO mice were divided into 3 groups ( n=5 each) using a random number table method: control group (group KO+ C), ALI group (group KO+ ALI) and ALI plus NAD + precursor substances nicotinamide mononucleotide (NMN) group (KO+ LPS+ NMN group). ALI was produced with lipopolysaccharide (LPS) 15 mg/kg injected intravenously.NMN 500 mg/kg was intraperitoneally injected at 1 h before injection of LPS in KO+ ALI+ NMN group, while the equal volume of normal saline was given instead in control group.Blood samples were collected from the abdominal aorta at 12 h after LPS or normal saline injection for blood gas analysis, and the animals were then sacrificed and the lung tissues were removed for microscopic examination of pathologic changes which were scored and for determination of wet/dry weight ratio (W/D ratio), and interleukin-6 (IL-6), IL-1β and tumor necrosis factor-alpha (TNF-α) contents (by enzyme-linked immunosorbent assay)and content of NAD + (using a spectrophotometer) and levels of SIRT1, acetylated nuclear factor kappaB (Ac-NF-κB), acetylated p53 (Ac-p53), acetylated FoxO1 (Ac-FoxO1) and acetylated PGC1α (Ac-PGC1α) (by Western blot). Results:Compared with group C, pH value and PaO 2 were significantly decreased, the PaCO 2, W/D ratio, lung injury score, contents of IL-6, IL-1β, TNF-α and NAD + were increased, expression of SIRT1 was up-regulated, and expression of Ac-NF-κB, Ac-p53, Ac-FoxO1 and Ac-PGC1α was down-regulated in group ALI ( P<0.05). Compared with group WT+ ALI, pH value and PaO 2 were significantly decreased, the PaCO 2, W/D ratio, lung injury score, contents of IL-6, IL-1β and TNF-α were increased, NAD + content was decreased, expression of SIRT1 was down-regulated, and expression of Ac-NF-κB, Ac-p53, Ac-FoxO1 and Ac-PGC1α was up-regulated in group KO+ ALI ( P<0.05). Compared with group KO+ ALI, pH value and PaO 2 were significantly increased, the PaCO 2, W/D ratio, lung injury score, contents of IL-6, IL-1β and TNF-α were decreased, NAD + content was increased, expression of SIRT1 was up-regulated, and expression of Ac-NF-κB, Ac-p53, Ac-FoxO1 and Ac-PGC1α was down-regulated in group KO+ ALI+ NMN ( P<0.05). Conclusion:The enhanced NAD + -mediated deacetylation activity of SIRT1 is involved in the endogenous protective mechanism in mice with endotoxin-induced ALI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA