Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Biomedical Engineering ; (6): 692-699, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008889

RESUMEN

With inherent sparse spike-based coding and asynchronous event-driven computation, spiking neural network (SNN) is naturally suitable for processing event stream data of event cameras. In order to improve the feature extraction and classification performance of bio-inspired hierarchical SNNs, in this paper an event camera object recognition system based on biological synaptic plasticity is proposed. In our system input event streams were firstly segmented adaptively using spiking neuron potential to improve computational efficiency of the system. Multi-layer feature learning and classification are implemented by our bio-inspired hierarchical SNN with synaptic plasticity. After Gabor filter-based event-driven convolution layer which extracted primary visual features of event streams, we used a feature learning layer with unsupervised spiking timing dependent plasticity (STDP) rule to help the network extract frequent salient features, and a feature learning layer with reward-modulated STDP rule to help the network learn diagnostic features. The classification accuracies of the network proposed in this paper on the four benchmark event stream datasets were better than the existing bio-inspired hierarchical SNNs. Moreover, our method showed good classification ability for short event stream input data, and was robust to input event stream noise. The results show that our method can improve the feature extraction and classification performance of this kind of SNNs for event camera object recognition.


Asunto(s)
Percepción Visual , Aprendizaje , Potenciales de Acción , Redes Neurales de la Computación , Plasticidad Neuronal
2.
Journal of Biomedical Engineering ; (6): 986-994, 2021.
Artículo en Chino | WPRIM | ID: wpr-921837

RESUMEN

Under the current situation of the rapid development of brain-like artificial intelligence and the increasingly complex electromagnetic environment, the most bionic and anti-interference spiking neural network has shown great potential in computing speed, real-time information processing, and spatiotemporal data processing. Spiking neural network is the core part of brain-like artificial intelligence, which realizes brain-like computing by simulating the structure of biological neural network and the way of information transmission. This article first summarizes the advantages and disadvantages of the five models, and analyzes the characteristics of several network topologies. Then, it summarizes the spiking neural network algorithms. The unsupervised learning based on spike timing dependent plasticity (STDP) rules and four types of supervised learning algorithms are analyzed. Finally, the research on brain-like neuromorphic chips at home and abroad are reviewed. This paper aims to provide learning ideas and research directions for new colleagues in the field of spiking neural network.


Asunto(s)
Algoritmos , Inteligencia Artificial , Encéfalo , Redes Neurales de la Computación
3.
Journal of Biomedical Engineering ; (6): 902-910, 2019.
Artículo en Chino | WPRIM | ID: wpr-781848

RESUMEN

Biological neural networks have dual properties of small-world attributes and scale-free attributes. Most of the current researches on neural networks are based on small-world networks or scale-free networks with lower clustering coefficient, however, the real brain network is a scale-free network with small-world attributes. In this paper, a scale-free spiking neural network with high clustering coefficient and small-world attribute was constructed. The dynamic evolution process was analyzed from three aspects: synaptic regulation process, firing characteristics and complex network characteristics. The experimental results show that, as time goes by, the synaptic strength gradually decreases and tends to be stable. As a result, the connection strength of the network decreases and tends to be stable; the firing rate of neurons gradually decreases and tends to be stable, and the synchronization becomes worse; the local information transmission efficiency is stable, the global information transmission efficiency is reduced and tends to be stable, and the small-world attributes are relatively stable. The dynamic characteristics vary with time and interact with each other. The regulation of synapses is based on the firing time of neurons, and the regulation of synapses will affect the firing of neurons and complex characteristics of networks. In this paper, a scale-free spiking neural network was constructed, which has biological authenticity. It lays a foundation for the research of artificial neural network and its engineering application.


Asunto(s)
Potenciales de Acción , Modelos Neurológicos , Redes Neurales de la Computación , Plasticidad Neuronal , Sinapsis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA