RESUMEN
Objective p38 Mitogen-activated protein kinase (MAPK) is a crossing center of various pathways. In this study, protein transduction system based on human immunodeficiency virus (HIV)-1 transactivator of transcription (TAT), which is an efficient delivery peptide of the foreign proteins into cells, was employed to study p38 MAPK functions in eukaryotic cells. Methods p38 And its dominant negative form, p38AF, were constructed into pET-His-TAT vector correctly to verify that the recombinant plasmids were well-founded through restriction enzyme digestion and DNA sequencing. The two proteins, His-TAT-p38 and His-TAT-p38AF, were expressed and purified in Escherichia coli by SDS-PAGE. Then they were incubated with ECV304 cells respectively and readily transduced into cells in a time-dependent and dose-dependent manner. The cells were stimulated by sorbitol. Activating transcription factor (ATF) 2 phosphorylation level was checked using Western blot to assess the activity of endogenous p38. Results Compared with controls, it was found that His-TAT-p38 increased the level ofATF2 phosphorylation in sorbitol-stimulated ECV304 cells, while His-TAT-p38AF inhibited it, indicating p38 MAPK protein delivery system based on TAT was constructed successfully. TAT-p38 and its dominant negative form possessed high biological activity after transduction into ECV304 cells by TAT protein delivery system. The results showed that p38AF fused with TAT could inhibit the transduction of endogenous p38 signal pathway in part, and other pathway might regulate p38 phosphorylation. Conclusions Our study provides a novel pathway to inhibit p38 signal pathway and establish a new method to study p38 function.
RESUMEN
HIV-associated dementia (HAD) is a public health problem and is particularly prevalent in drug abusers. The neuropathogenesis of human immunodeficiency virus (HIV) infection involves a complex cascade of inflammatory events, including monocyte/macrophage infiltration in the brain, glial immune activation and release of neurotoxic substances. In these events, astrocytic-derived monocyte chemoattractant protein-1 (MCP-1) plays an important role, whose release is elevated by HIV transactivator of transcription (HIV tat) and could be further elevated by opiates. This review will also consider some critical factors and events in MCP-1 enhancement induced by the interactions of opiate and HIV tat, including the mediating role of mu opioid receptor (MOR) and CCR2 as well as the possible signal transduction pathways within the cells. Finally, it will make some future perspectives on the exact pathways, new receptors and target cells, and the vulnerability to neurodegeneration with HIV and opiates.
RESUMEN
HIV-assodated dementia (HAD) is a public health problem and is particularly prevalent in drug abusers. The neuropathogenesis of human immunodeficiency virus (HIV) infection involves a complex cascade of inflammatory events, including monocyte/macrophage infiltration in the brain, glial immune activation and release of neurotoxic substances. In these events, astrocytic-derived monocyte chemoattractant protein-1 (MCP-1) plays an important role, whose release is elevated by HIV transactivator of transcription (HIV tat) and could be further elevated by opiates. This review will also consider some critical factors and events in MCP-1 enhancement induced by the interactions of opiate and HIV tat, including the mediating role of mu opioid receptor (MOR) and CCR2 as well as the possible signal transduction pathways within the cells. Finally, it will make some future perspectives on the exact pathways, new receptors and target cells, and the vulnerability to neurodegeneration with HIV and opiates.
RESUMEN
BACKGROUND: Carcinoembryonic antigen (CEA) is well-known soluble tumor marker frequently detectable in peripheral blood of carcinoma patients and considered as good target for antigen-specific immunotherapy. However, it is known that the induction of immune response to CEA is very difficult because CEA is a self-antigen expressed in fetal cells and weakly expressed in normal colorectal epithelial cells. To enhance anti-tumor immunity specific for CEA, recombinant CEA protein was modified using listeriolysin O (LLO) for endosomal lysis and transactivator of transcription (Tat) domain for transducing extracellular proteins into cytoplasm. METHODS: After immunization using dendritic cells pulsed with Tat-CEA, both Tat-CEA and LLO, and both Tat-CEA and Tat-LLO, antibody titer to CEA and LLO, cytotoxic T lymphocyte activity and the frequency of IFN-gamma producing T lymphocytes were measured. RESULTS: Immunization using DC pulsed with both Tat-CEA and Tat-LLO protein showed the increasement of production of CEA-specific antibody in serum, cytotoxic T lymphocyte activity, the frequency of IFN-gamma secreting T cells, compared with DC pulsed with both Tat-CEA and LLO. Furthermore the ratio of CD8+ T cell to CD4+ T cell among CEA-specific T cells was increased in group pulsed with both Tat-CEA and Tat-LLO. CONCLUSION: These results suggested that DC vaccine using Tat-LLO could be used for the development of effective immunotherapy for the treatment of tumor.