RESUMEN
Objective To investigate the clinical and genetic characteristics of a family with hypokalemic periodic paralysis(HOKPP).Methods The clinical data of one HOKPP family were retrospectively analyzed.Results The proband presented with periodic paralysis,limb weakness and decreased serum potassium(1-2 mmol/L).The proband's father and cousin had similar symptoms.A heterozygous missense variant c.2006G>A(p.R669H)in SCN4A gene was identified in the proband,his father,younger aunt and cousin using gene detection.However,the variant was absent in his elder aunt and younger uncle.Conclusions The family shows irregular dominant inheritance.The severity,frequency and age of onset of male heterozygotes were different,while female heterozygotes had no clinical phenotype.The study first confirms that the R669H variant in SCN4A gene causes complete penetrance in males and carriers in females in Asian populations.
RESUMEN
Objective:To investigate the clinical phenotype and genetic characteristics of developmental epileptic encephalopathy 18 (DEE18) caused by SZT2 gene variants. Methods:Clinical data of 2 children with SZT2 related DEE18 who visited the Department of Pediatric Neurology, Linyi People′s Hospital in March 2020 and July 2023 were collected. The whole exome sequencing (WES) and Sanger sequencing were applied to verify the child and their parents. SWISS-MODEL software was used to perform protein 3D modeling for the selected SZT2 gene variants. Results:Both of the 2 cases showed severe global developmental delay, epileptic seizures, autism, megacephaly, facial deformity, hypotonia, corpus callosum malformation, persistent cavum septum pellucidum, and slow background activity and focal discharge in video electroencephalography. Case 1 was easy to startle and thin in stature; case 2 had immune deficiency and clustered seizures. WES results showed that case 1 carried a compound heterozygous variant of c.5811G>A (p.W1937X) (paternal) and c.9269delG (p.S3090Ifs *94) (maternal), while case 2 carried a compound heterozygous variant of c.6302A>C(p.H2101P) (paternal) and c.7584dupA (p.E2529Rfs *20) (maternal), the parents of both patients with normal clinical phenotypes. The 4 mutations mentioned above were novel variations that had not yet been reported domestically or internationally. According to the American College of Medical Genetics and Genomics variant classification criteria and guidelines, the p.S3090Ifs *94 variant was interpreted as pathogenic; p.W1937X variant was interpreted as pathogenic; p.E2529Rfs *20 variant was interpreted as likely pathogenic; p.H2101P variant was interpreted as uncertain significance. 3D modeling showed that the variant of p.H2101P resulted in a significant change in the hydrogen bond around the 2 101st amino acid encoded, leading to a decrease in protein stability. The other 3 variants led to early truncation of peptide chain and obvious changes in protein structure. Conclusions:DEE18 caused by SZT2 gene mutation is mainly an autosome recessive genetic disease, and its clinical manifestations include global developmental delay, epileptic seizures, autism, craniofacial malformation, hypotonia, epileptic discharge, corpus callosum malformation, persistent cavum septum pellucidum, shock, small and thin stature, and immune deficiency. Four novel variants related to the SZT2 gene may be the genetic etiology of DEE18 patients in this study.
RESUMEN
Objective:To investigate the clinical phenotype and genetic characteristics of infantile epileptic spasm syndrome caused by BRWD3 gene mutation. Methods:Clinical data of a child with BRWD3 related infantile epileptic spasm syndrome who was admitted to Department of Pediatric Neurology of Linyi People′s Hospital on August 2, 2019 were collected and followed up, whole exome sequencing technology and Sanger sequencing were applied to verify the child and his parents, and the pathogenicity of mutation site was analyzed. The studies till June 2023 were searched with keywords of " BRWD3" in both English and Chinese databases of China National Knowledge Infrastructure, Wanfang, Online Mendelian Inheritance in Man, and PubMed. The clinical phenotype and genetic characteristics of patients with BRWD3 related epilepsy were summarized. Results:The patient was a 4 years and 4 months old boy, with a clinical phenotype including severe global development delay, focal seizures (the onset age was 4 months), epileptic spasm (the onset age was 6 months), autism, megacephaly, high forehead as well as hypsarrhythmia. The whole exome sequencing results showed a de novo and frameshift variation c.4318_4319del(p.Q1441Efs*20)(NM_153252) in the BRWD3 gene, and the variation was interpreted as pathogenic (PVS1+PS2+PM2) according to the American College of Medical Genetics and Genomics variant classification criteria and guidelines. A total of 7 English literature articles were retrieved reporting 16 cases of BRWD3 gene related epilepsy in children (including 1 case of infantile epileptic spasm syndrome), and there has been no report in China yet. Totally there were 17 cases of BRWD3 gene related epilepsy including this case. All the cases showed X chromosome dominant inheritance, of whom 15 cases showed minor variations, including 7 missense variations, 3 frameshift variations, 3 splicing variations, 2 nonsense variations, and the remaining 2 cases showed large segment deletions. A total of 15 different variants were found. The phenotypes of the 17 patients mainly included epileptic seizures (17/17), intellectual disability (10/17), motor development disorder (7/17), speech impairment (9/17), megacephaly (8/17), facial malformation (8/17), autism (4/17) and hypotonia (4/17). The common seizure types were found to be focal seizures, occasionally epileptic spasm seizures and tonic seizures. Conclusions:BRWD3 gene variation related epilepsy is an X chromosome dominant genetic disease with a wide clinical phenotype spectrum. BRWD3 gene mutation c.4318_4319del(p.Q1441Efs *20) could cause infantile epileptic spasm syndrome, manifested as severe global developmental delay, epileptic spasm, focal seizures, autism, craniofacial malformation and hypsarrhythmia. This research enriches BRWD3 gene mutation spectrum.
RESUMEN
【Objective】 To analyze the genetic variation characteristics and clinical phenotypes of a family with primary microcephaly (MCPH) caused by RTTN gene variation, and to provide reference for genetic counseling and prenatal diagnosis. 【Methods】 Clinical data of the three patients (including 2 fetuses and 2-year-old proband,and one fetus with clinical diagnosis) and their parents were collected and analyzed. Two of the children and their parents were tested by trio whole exome sequencing (trio-WES), sanger sequencing validation sites, and the hazard of their compound heterozygous variants was predicted. Literature review was conducted through domestic and international databases to collect reported RTTN gene mutation cases. 【Results】 Three patients in this family had anomalies of the septum pellucidum, hypoplasia of the corpus callosum and other brain malformations during fetal period. The proband (G2) and fetus (G3) showed intrauterine growth retardation and MCPH in late pregnancy; besides, G2 was born with global developmental delay. Trio-WES detected a c.2101(exon16)C>T(p.Arg701Ter,1526) nonsense and a c.2863(exon22)G>A(p.Glu955Lys)missense in the RTTN gene of G2 and G3, which were inherited from their father and mother, forming a compound heterozygous variant. According to the American College of Medical Genetics and Genomics (ACMG) variant classification guidelines, two variants were likely to be pathogenic (LP) and uncertain significance (VUS). Among them, c.2863(exon22)G>A was a newly discovered missense, which was predicted by the software to be harmful to the gene product. 【Conclusions】 Complex heterozygous variations of RTTN gene (c.2101C>T and c.2863G>A) are the genetic cause of MCPH in this family. This report has enriched the variation spectrum of RTTN gene, provided guidance for prenatal diagnosis and reproduction of this family, as well as material and reference for further understanding of the diseases caused by this gene mutation.
RESUMEN
@#Objective To examined gene mutations in thymic carcinoma (TC) patients and to explore prognostic correlates and potential targets for therapy. Methods We retrospectively included TC patients in Sichuan Cancer Hospital between January 2015 and Febuary 2021.Whole-exome sequencing was performed on tumor tissues from TC patients and their control peripheral blood samples, and the raw data were subjected to bioinformatics analysis and statistical analysis. Results We finally included 24 TC patients with 16 males and 8 females at a median age of 55 (42-74) years. The highest frequency of single nucleotide mutations in this cohort were in the TTN gene (42%), HSPG2 (29%), and OBSCN (29%). Higher frequency of copy number variations occurred in ZNF276 gene (54%, loss), BEND3 (50%, loss), DHODH (50%, loss), and VAC14 (50%, loss). Microsatellite instability (MSI) phenotype was found in 25% of the patients, and the mean tumor mutation burden (TMB) was 9.86. Conclusion This study is the first comprehensive analysis of the mutation profile of thymic carcinoma in China to date. The mutation frequencies of TTN, OBSCN, and ZNF276 genes were high. The biomarker analysis suggests that patients may benefit from immunotherapy and have a long effective survival.
RESUMEN
ObjectiveTo explore the clinical features and causative genes of short stature children with unknown etiology, providing evidence for precise clinical diagnosis and treatment. MethodsThe study recruited children with suspected but undiagnosed short stature from the pediatric endocrinology department in our hospital between January 2018 and August 2022. A retrospective analysis was performed on the clinical manifestations, laboratory test and whole exome sequencing (WES) results. Causative genes were classified and analyzed according to different pathogenic mechanisms. ResultsA total of 48 children (30 boys and 18 girls) were enrolled, aged 7.73 ± 3.97 years, with a height standard deviation score ( HtSDS) of -3.63 ± 1.67. Of the patients, 33 (68.8%) suffered from facial anomalies, 31 (64.6%) from skeletal abnormalities, 26 [54.2%, 61.5% of whom born small for gestational age (SGA)] from perinatal abnormalities, 24 [50.0%, 87.5% of whom with growth hormone (GH) peak concentration below normal] from endocrine disorders and 21(43.8%) had a family history of short stature. Laboratory tests showed that GH peak concentration following stimulation test was (9.72 ± 7.25) ng/mL, IGF-1 standard deviation score was -0.82 ± 1.42, the difference between bone age and chronological age was -0.93 ± 1.39 years. Of the 25 cases with mutant genes found by WES, 14 (56.0%) had pathogenic mutation, 6 (24.0%) likely pathogenic mutation, and 5 (20.0%) mutation of uncertain significance. Pathogenic and likely pathogenic variants were identified in 14 genes, including 10 affecting intracellular signaling pathways (PTPN11, RAF1, RIT1, ARID1B, ANKRD11, CSNK2A1, SRCAP, CUL7, SMAD4 and FAM111A) and 4 affecting extracellular matrix (ECM) components or functions (ACAN, FBN1, COL10A1 and COMP). ConclusionsA rare monogenic disease should be considered as the possible etiology for children with severe short stature accompanied by facial anomalies, disproportionate body types, skeletal abnormalities, SGA, GH peak concentration below normal and a family history of short stature. WES played an important role in identifying the monogenic causes of short stature. This study indicated that affecting growth plate cartilage formation through intracellular signaling pathways and ECM components or functions was the main mechanism of causative genes leading to severe short stature in children. Further research may help discover and study new pathogenic variants and gene functions.
RESUMEN
Background: Melanoma is a highly malignant form of skin cancer that exhibits remarkable metabolic adaptability. Melanoma cells exhibit the capacity to adapt to specific conditions of the tumor microenvironment through the utilization of diverse energy sources, thereby facilitating the growth and advancement of the tumor. One of the notable characteristics of metabolic reprogramming is the heightened rate of lipid synthesis. This review was conducted to illustrate how the integration of whole exom and transcriptome sequencing will enhance the detection of the effect of cholesterol metabolism in melanoma. Methods: The Cochrane database, Embase, PubMed, SCOPUS, Google Scholar, Ovid, and other databases were thoroughly searched for works addressing integrated whole exome and transcriptome sequencing in cholesterol metabolism in melanoma. Skin malignancy, melanoma progression, transcriptome sequencing, whole exome sequencing, transcriptome sequencing by RNA sequencing, and integrated transcriptome and whole exome sequencing were the key phrases employed. This article underwent a phased search for pertinent literature using a staged literature search methodology. Each section's relevant papers were identified and summarized independently. The results have been condensed and narratively given in the pertinent sections of this thorough assessment. Results: DNA-based analysis has proven to be ineffective in identifying numerous mutations that have an impact on splicing or gene expression. RNA-Sequencing, when combined with suitable bioinformatics, offers a reliable method for detecting supplementary mutations that aid in the genetic diagnosis of geno-dermatoses. Therefore, clinical RNA-Sequencing expands the scope of molecular diagnostics for rare genodermatoses, and it has the potential to serve as a dependable initial diagnostic method for expanding mutation databases in individuals with inheritable skin conditions. Conclusion: The integration of patient-specific tumor RNA-sequencing and tumor DNA whole-exome sequencing (WES) would potentially enhance mutation detection capabilities compared to relying solely on DNA-WES.
Asunto(s)
Neoplasias , Virus ADN Tumorales , Secuenciación del Exoma , MelanomaRESUMEN
Resumen Actualmente la secuenciación del exoma completo (WES; Whole-exome sequencing) mediante la técnica NGS (Next-generation sequencing) es uno de los estudios genéticos más solicitados dentro del abordaje de pacientes con Discapacidad Intelectual con o sin otras anomalías. Al igual que con otros proce dimientos y estudios clínicos, es conveniente que los médicos prescriptores tengan una comprensión clara de los alcances y limitaciones del uso de WES, del proceso de análisis de las variantes genéticas identificadas, así como de aspectos a evaluar acerca de la calidad y estructura de los informes de los estudios de NGS, con el objetivo de que puedan interpretar mejor los resultados de un estudio y plantear de la mejor manera la correlación de los mismos con la clínica observada.
Abstract Currently, Whole exome sequencing (WES) using NGS (Next-generation sequencing) technology is one of the most requested genetic studies within the approach of patients with intellectual disability with or without other anomalies. As with other procedures and clinical studies, it is convenient for prescribing physicians to have a clear understanding of the scope and limitations of the use of WES, the analysis process of the genetic variants identified, as well as aspects to be evaluated regarding quality and structure of the reports of the NGS studies, with the aim that they can better interpret the results of a study, evaluate its quality, and propose in the best way the correlation of the same with the observed phenotype.
RESUMEN
Objective @#This article explores the relationship between congenital tooth agenesis and related gene mutations, providing a reference for early diagnosis of the disease.@*Methods @# Clinical and radiographic examinations of a rare case of congenital tooth agenesis were conducted to evaluate the abnormal morphology and quantity of the teeth, as well as the overall health of the patient. Bidirectional sequencing of the PAX9 and MSX1 genes and whole-exome sequencing were conducted to identify potential genetic abnormalities. Sanger sequencing of the newly discovered mutation site was performed on the proband's son. Subsequently, the impacts of the mutations were evaluated through computational tools and a cell-based gene transfection assay. @*Results @#This is a rare case of tooth agenesis characterized by a congenitally missing first molar, a second molar with one single root and a supernumerary second premolar in the right mandibular dentition. The c.717 C>C/T in PAX9 is synonymous. The c.119C>G in MSX1 is a missense mutation predicted to be “benign” by Polyphen. Through whole-exome sequencing, we found a novel mutation, c.637-7 C>A in intron 3 of the WNT6 gene, which is predicted by MAXENT to influence the splicing of mRNA. Both the proband and his son carry this mutation. A cell-based gene transfection assay demonstrated that it did not alter the mRNA splicing of WNT6. @* Conclusion @#The interaction between single nucleotide polymorphisms may contribute to congenital tooth agenesis.
RESUMEN
Objective To detect and analyze the susceptibility genes of methyl acetate poisoning in patients by whole exome sequencing. Methods Two patients with occupational acute severe methyl acetate poisoning and their first-degree relatives who work in the same occupation and position with similar working hours were selected as the research subjects by judgment sampling method. Peripheral blood was collected for whole exome sequencing. The sequencing data was compared with the public genome database to screen the mutation sites and find out the gene sites related to methyl acetate poisoning. The suspected pathogenic mutation genes were annotated and interpreted. Results The results of whole exome sequencing showed that there were 40 differential genes between the patients with methyl acetate poisoning and their first-degree relatives, including 80 single nucleotide polymorphisms and eight Indel with specific marker sequence index. Among these, the genes with strong correlation were carboxyesterase 1 (CES1) and mucin (MUC) 5B. The CES1 gene loci c.248C>T (p.Ser83Leu) heterozygous mutations, MUC5B gene loci c.6635C>T (p.Thr2212Met) and c.7685C>T (p.Thr2562Met) heterozygous mutations in patients with methyl acetate poisoning were detected. They were missense mutations. By constructing a protein-protein interaction network, a total of 11 pairs of interactions with high levels of evidence were identified, involving genes such as lysine methyltransferase 2C, HECT and RLD domains containing E3 ubiquitin protein ligase 2, neutrophil cytoplasmic factor 1, nicotinamide adenine dinucleotide phosphate oxidase 3, C-terminal binding protein 2, zinc finger protein 717, FSHD region gene 2 family member C, FSHD region gene 1, MUC4, MUC6, MUC5B, and MUC12. Conclusion The polymorphism of CES1 and MUC5B genes may be related to the occurrence and development of methyl acetate poisoning in patients.
RESUMEN
Objective@# To explore the pathogenic genes in a Chinese family affected by nonsyndromic tooth agenesis so as to study the pathogenesis of oligodontia.@*Methods @# Hospital ethical approval and informed consent of the patients and family members were obtained. Clinical data of the proband and close family members were collected, peripheral venous blood was collected, and DNA was extracted. Gene sequencing was performed through whole-exome sequencing, and then the screened pathogenic genes were verified by Sanger sequencing. The three-dimensional structure of the mutant proteins was analyzed and compared with the wild-type using bioinformatics tools.@*Results@#The two patients with congenital majority tooth loss in this family were cousins, and there were no other patients with congenital majority tooth loss in the family. Besides congenital multiple tooth loss, the two patients had no obvious hair abnormalities, finger/toe abnormalities, sweating abnormalities or other abnormal manifestations of ectodermal tissue. We found a mutant gene that in this family by carrying out gene sequencing of the patients and their close family members. A novel EDA (ectodysplasin A) missense mutation c.983C>T (p. Pro328Leu) was identified, which changed the encoded amino acid from proline (Pro) to leucine (Leu). Analysis of the mutation site showed that the site was highly conserved, and three-dimensional structure modeling also found that it changed the structure of EDA. @* Conclusion@#A novel EDA missense variant (c.983C>T, p.Pro328Leu) was first identified in a Chinese family with nonsyndromic tooth agenesis, extending the mutation spectrum of the EDA gene.
RESUMEN
ObjectiveTo reveal the differences of the related pathogenicity gene mutations between sebaceous adenocarcinoma (SC) of scalp and sebaceous adenoma (SA) of scalp on whole exome level. MethodsWhole exome sequencing was performed on a SC sample and a SA sample by Illumina Hiseq 2500 platform. Suspicious single nucleotide variation sites were selected for mutation conservation and functional analysis. SciClone was used to track subclone evolution and clonal map information was obtained for each tumor sample. The high-frequency significant gene mutations in the tumor sample were screened by MutSigCV software, and compared with the known driver genes. ResultsTwo driver genes TFDP1 and ACVR1B harboring mutations in scalp SC compared to SA were found. ConclusionsThe finding of mutation in driver genes TFDP1 and ACVR1B should be confirmed in a large cohort, which might reveal the mechanism of scalp SC development and find a therapeutic target for SC.
RESUMEN
Nonobstructive azoospermia (NOA) is a severe condition in infertile men, and increasing numbers of causative genes have been identified during the last few decades. Although certain causative genes can explain the presence of NOA in some patients, a proportion of NOA patients remain to be addressed. This study aimed to investigate potential high-risk genes associated with spermatogenesis in idiopathic NOA patients by whole-exome sequencing. Whole-exome sequencing was performed in 46 male patients diagnosed with NOA. First, screening was performed for 119 genes known to be related to male infertility. Next, further screening was performed to determine potential high-risk causative genes for NOA by comparisons with 68 healthy male controls. Finally, risk genes with high/specific expression in the testes were selected and their expression fluctuations during spermatogenesis were graphed. The frequency of cystic fibrosis transmembrane conductance regulator (CFTR) gene pathogenic variant carriers was higher in the NOA patients compared with the healthy controls. Potential risk genes that may be causes of NOA were identified, including seven genes that were highly/specifically expressed in the testes. Four risk genes previously reported to be involved in spermatogenesis (MutS homolog 5 [MSH5], cilia- and flagella-associated protein 54 [CFAP54], MAP7 domain containing 3 [MAP7D3], and coiled-coil domain containing 33 [CCDC33]) and three novel risk genes (coiled-coil domain containing 168 [CCDC168], chromosome 16 open reading frame 96 [C16orf96], and serine protease 48 [PRSS48]) were identified to be highly or specifically expressed in the testes and significantly different in the 46 NOA patients compared with 68 healthy controls. This study on clinical NOA patients provides further evidence for the four previously reported risk genes. The present findings pave the way for further functional investigations and provide candidate risk genes for genetic diagnosis of NOA.
Asunto(s)
Humanos , Masculino , Azoospermia/patología , Pueblos del Este de Asia , Secuenciación del Exoma , Mutación , Proteínas/genéticaRESUMEN
Clouston syndrome (OMIM #129500), also known as hidrotic ectodermal dysplasia type 2, is a rare autosomal dominant skin disorder. To date, four mutations in the GJB6 gene, G11R, V37E, A88V, and D50N, have been confirmed to cause this condition. In previous studies, the focus has been mainly on gene sequencing, and there has been a lack of research on clinical manifestations and pathogenesis. To confirm the diagnosis of this pedigree at the molecular level and summarize and analyse the clinical phenotype of patients and to provide a basis for further study of the pathogenesis of the disease, we performed whole-exome and Sanger sequencing on a large Chinese Clouston syndrome pedigree. Detailed clinical examination included histopathology, hair microscopy, and scanning electron microscopy. We found a novel heterozygous missense variant (c.134G>C:p.G45A) for Clouston syndrome. We identified a new clinical phenotype involving all nail needling pain in all patients and found a special honeycomb hole structure in the patients' hair under scanning electron microscopy. Our data reveal that a novel variant (c.134G>C:p.G45A) plays a likely pathogenic role in this pedigree and highlight that genetic testing is necessary for the diagnosis of Clouston syndrome.
Asunto(s)
Humanos , Conexina 30/genética , Conexinas/genética , Pueblos del Este de Asia , Displasia Ectodérmica/patología , FenotipoRESUMEN
Objective Mohr-Tranebjaerg syndrome (MTS) is a rare X-linked neurodegenerative disorder which usually involving hearing impairment, gradual dystonia, and other symptoms. In this study, we perform analyzed the genetic makeup of a family with this rare Mohr-Tranebjaerg syndrome. Methods We collected the clinical data of the family, did the whole exome sequencing on the proband Ⅲ6 with a rare mutation, and verified the mutation in another affected family member Ⅲ5 and unaffected members Ⅰ1, Ⅰ2, Ⅱ1, Ⅱ5, Ⅱ7, Ⅱ8, Ⅲ7. Results The patients in the family all showed early-onset deafness. More than a couple of affected male members have dystonia with/without mental disorders. Genetic testing results showed the proband Ⅲ6 had a c.133-2delA in TIMM8A (NM_ 004085.3, DDP1), highly likely pathogenic(LP). This variation was detected in affected Ⅲ5 as well as the unaffected females Ⅰ1, Ⅱ5, Ⅱ7. Conclusions MTS caused by the rare TIMM8A mutation, the molecular etiology of the family with this rare disease, is highly consistent with the clinical manifestations and segregation. Other than the deafness, other symptoms varied among the affected family members. Genetic diagnosis for such X-linked diseases can also identify female heterozygotes. Genetic and reproduction counseling can help families in the family planning.
RESUMEN
Objective:To compare the genetic spectrums of esophageal squamous cell carcinoma (ESCC) patients with different prognosis after postoperative radiotherapy and to screen the genetic variants associated with radiotherapy resistance.Methods:A total of 32 ESCC patients who received radical surgery and postoperative adjuvant radiotherapy in Affiliated Hospital of Nantong University from January 2015 to December 2019 were selected as the study objects. According to whether there was any recurrence in the radiation field within 1 year, they were divided into a recurrence group (radiotherapy resistance group, n=16) and a stable group (radiotherapy sensitive group, n=16). Genomic DNA was extracted from patients and high-throughput sequencing was performed using whole exome sequencing (WES) technology. Biological information analysis software Trimmomatic, BWA and Picard were used to process the data and the alignment files were obtained by GATK comparison, then Vardict software was used to screen out various genetic variants from the sequencing data. The disease free survival (DFS) and overall survival (OS) were estimated by Kaplan-Meier method. Cox proportional hazard regression model was used to analyze the independent risk factors of DFS and OS of ESCC patients. Results:After quality control of the sample data, 26 patients were finally included in this study for follow-up analysis, 13 in each of the recurrence and stable groups. The median tumor mutation burden of non-silent tumors in the whole group was 0.95 mutations/Mb. The substitution types of mutant bases were mainly C>T conversion, followed by C>G transmutation. The genetic variants with the highest frequency were single nucleotide polymorphism (SNP) (75.1%), deletion mutation (13.7%) and insertion mutation (10.5%). The number of tumor-specific mutations in the recurrence group was slightly higher than that in the stable group (median mutation number was 36 and 34, respectively), and the top ten gene profiles of mutation frequency were significantly different between the two groups. In the recurrence group, 392 unique mutated genes were detected, and the top five were MUC19, NPIPA5, EPPK1, FLG and FOXG1. In the stable group, 192 unique mutation genes were detected, and the top five were TCHH, WNK1, AIM1L, COL6A5 and DPCR1. The median DFS and OS were 15.0 months (95% CI: 10.1 months-not reached) and 26.2 months (95% CI: 19.8 months-not reached) in the recurrence group respectively, and no recurrence or metastasis occurred in the stable group. Univariate analysis showed that GRIK2 ( χ2=6.81, P=0.009), MUC4 ( χ2=4.25, P=0.039), MUC5B ( χ2=4.03, P=0.045), PRRG1 ( χ2=5.15, P=0.023) gene mutations, 3p deletion ( χ2=4.16, P=0.041) and 14q deletion ( χ2=7.09, P=0.008) were correlated with DFS. FLG ( χ2=6.41, P=0.011), NPIPA5 ( χ2=4.57, P=0.033), PKD1L2 ( χ2=6.41, P=0.011), FOXG1 ( χ2=4.57, P=0.033) gene mutations, 3p deletion ( χ2=3.88, P=0.049), 14q deletion ( χ2=5.66, P=0.017) and 18p deletion ( χ2=3.85, P=0.050) were associated with OS. Multivariate analysis showed that 14q deletion ( HR=3.65, 95% CI: 1.18-11.32, P=0.025) was an independent risk factor for DFS of ESCC patients with postoperative adjuvant radiotherapy, and FLG ( HR=8.94, 95% CI: 1.52-52.74, P=0.016), NPIPA5 ( HR=6.36, 95% CI: 1.23-33.03, P=0.028) gene mutation and 14q deletion ( HR=3.82, 95% CI: 1.18-12.31, P=0.025) were independent risk factors for OS of ESCC patients with postoperative adjuvant radiotherapy. Conclusion:The WES results suggest that the types and rates of gene mutations of the ESCC patients with postoperative adjuvant radiotherapy in the recurrence and stable groups are basically the same, but the mutation spectrum of the two groups is significantly different. FLG, NPIPA5 gene mutations and 14q deletion can be used as molecular markers to predict the prognosis of ESCC patients treated with postoperative adjuvant radiotherapy.
RESUMEN
Objective:To analyze clinical characteristics of and causative genes in two families with dystrophic epidermolysis bullosa, and to reveal the pathogenesis of the disease and mechanisms underlying phenotypic differences between patients.Methods:DNA was extracted from peripheral blood samples of members from two families with dystrophic epidermolysis bullosa, and subjected to high-throughput sequencing and Sanger sequencing.Results:The clinical manifestations of the 2 probands in the 2 families were consistent with the diagnosis of dystrophic epidermolysis bullosa, and the symptoms of the proband in family 1 were more serious than those of other patients in the family. Genetic testing showed that all patients in family 1 carried a mutation c.6082G>C (p.G2028R) in the COL7A1 gene, and the proband and her phenotypically normal mother and uncle also carried a splice-site mutation c.7068+2 (IVS91) T>G in the COL7A1 gene, both of which were first reported. The proband in family 2 carried the mutations c.6081_6082 ins C (p.G2028Rfs*71) and c.1892G>A (p.W631X, first reported) in the COL7A1 gene, which were inherited from her father and mother, respectively.Conclusion:The two pathogenic mutations may be the molecular mechanism underlying the severe clinical phenotype in the proband in family 1; the first reported mutations enriched the mutation spectrum of the COL7A1 gene.
RESUMEN
This paper reported a woman with polycystic kidney disease who had increased fetal nuchal translucency (NT) in her two sequential pregnancies. The fetal NT thickness in the first pregnancy was 5.1 mm at 12 +5 weeks of gestation, and the infant was born prematurely at 32 gestational weeks. However, the baby girl died due to respiratory insufficiency and severe asphyxia. The NT thickness in the present pregnancy was 5.7 mm at 12 weeks of gestation. Whole-exome sequencing (WES) and Sanger sequencing confirmed that the dead infant and the current fetus carried compound heterozygous variants of maternal c.4255_4256del and paternal c.18366+2T>C in NEB gene, both were pathogenic variants. The current fetus was diagnosed with arthrogryposis multiplex congenita 6 (AMC6). After genetic counseling, the pregnant woman chose to terminate the pregnancy. The pregnant woman was diagnosed as having polycystic kidney disease type 1 caused by large deletions in exons 25-43 of PKD1 gene by WES combined with multiplex ligation-dependent probe amplification technology.
RESUMEN
This article reported the genetic etiology of two pedigrees with Alstrom syndrome and the results of prenatal genetic diagnosis in the second pregnancies of the two pedigrees. The probands in the two pedigrees both had different degrees of visual abnormalities. The mothers of the two probands were pregnant again and received prenatal diagnosis in the First Affiliated Hospital of Zhengzhou University. Whole-exome sequencing and Sanger sequencing confirmed that the proband of pedigree 1 carried compound heterozygous variants of c.6103C>T(p.Gln2035*) and c.6430C>T(p.Arg2144*) in ALMS1 gene, and the parents were carriers. While the proband of pedigree 2 was found to carry compound heterozygous variants of c.9148_9149delCT(p.Cys3051Serfs*9) and c.12028delC(p.Leu4010Typfs*19) in ALMS1 gene and the parents were also carriers. Among these variants, c.6103C>T(p.Gln2035*), c.9148_9149delCT(p.Cys3051Serfs*9) and c.12028delC(p.Leu4010Typfs*19) were all de novo ones. Prenatal genetic detection confirmed the fetus of pedigree 1 carried c.6430C>T(p.Arg2144*) variant inherited from the father and the pregnancy was continued after genetic counselling, while the fetus of pedigree 2 was found to carry both of the same variants as the proband and the pregnancy was terminated.
RESUMEN
This article reports a pedigree with two previously deceased neonates. Both neonates did not experience asphyxia but passed away on their 5th and 13th day of life. The chromosomal analysis of the parents' karyotype revealed no abnormalities. Clinical manifestations of the two deceased cases and relevant medical records were recollected. Whole exome sequencing was conducted on the stem blood sample of Neonate 2, revealing a c.729_730insTT homozygous mutation (p.D244Lfs*39) in the methylmalonyl-CoA mutase gene (NM_000255). It was confirmed that Neonate 2 was affected with methylmalonic acidemia. Amniocentesis was performed at 20 +3 weeks in the current pregnancy. Sanger sequencing of amniotic fluid indicated that the fetus carried the same gene mutation as Neonate 2. Consequently, the fetus was expected to be a patient with methylmalonic acidemia and to exhibit the same phenotype as Neonate 2. Termination of pregnancy, therefore, was selected at 24 weeks of gestation.